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PREFACE.

The following pages contain an elementary course of study
in the resistance of materials and the mechanics of beams,

columns and shafts, designed for the use of classes in technical

schools and colleges. It should be preceded by a good train-

ing in mathematics and theoretical mechanics, and be followed

by a special study of the properties of different qualities of

materials, and by detailed exercises in construction and design.

As the plan of the book is to deal mainly with the mechanics

of the subject, extended tables of the results of tests on different

kinds and qualities of materials are not given. The attempt,

however, has been made to state average values of the quanti-

ties which express the strength and elasticity of what may be

called the six principal materials. On account of the great

variation of these values in different grades of the same material

the wisdom of this attempt may perhaps be questioned, but

the experience of the author in teaching the subject during the

past eleven years has indicated that the best results are attained

by forming at first a definite nucleus in the mind of the student,

around which may be later grouped the multitude of facts

necessary in his own particular department of study and work.

As the aim of all education should be to develop the powers
of the mind rather than impart mere information, the author

has endeavored not only to logically set forth the principles

and theory of the subject, but to so arrange the matter that

students will be encouraged and required to think for them-

selves. The problems which follow each article will be found

713471
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useful for this purpose. Without the solution of many numer-

ical exercises it is indeed scarcely possible to become well

grounded in theory.

In the chapters on flexure many problems relating to I beams

and other wrought iron shapes are presented. The subject of

continuous beams is not developed to its full extent, but it is

thought that enough is given for an elementary course. The

resistance of columns has been treated with as much fullness as

now appears practicable from a theoretical point of view. Con-

siderable attention has been paid to combined stresses^and

particularly to the combination of torsion and flexure in shafts.

A new formula for the case of repeated stresses is presented,

and the discussions regarding the effect of shocks and the inter-

nal work in beams are believed to be novel. The attempt has

been made to render the examples, exercises, and problems of

a practical nature, and also of a character to clearly illustrate

the principles of the theory and the methods of investigation.

The present edition is the result of a careful revision, many
alterations and additions having been made in order to render

the book more efficient for class use. The answers to problems
contained in the key to the first edition are here given in the

appendix. All the cuts have been redrawn and several new

ones inserted. Lastly, on account of the universal approbation

which has been expressed concerning the author's experiment
in issuing his ' Roofs and Bridges

'

with each alternate leaf

blank, the same plan has been here adopted. On these blank

pages students may record their solutions of the problems in a

permanent form that will be of great value to them in subse-

quent practical work.

MANSFIELD MERRIMAN.
BETHLEHEM, PA., December, 1889.
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MECHANICS OF MATERIALS.

CHAPTER I.

THE RESISTANCE AND ELASTICITY OF MATERIALS.

ARTICLE i. AVERAGE WEIGHTS.

The principal materials used in engineering constructions

are timber, brick, stone, cast iron, wrought iron, and steel.

The following table gives their average unit-weights and aver-

age specific gravities.

Material.
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Unless otherwise stated the above average values will be used

in the examples and problems of this book. In all engineering

reference books are given tables showing the unit-weights for

different qualities of the above six principal materials, and also

for copper, lead, glass, cements, and other materials used in

construction.

For computing the weights of bars, beams, and pieces of uni-

form cross-section, the following approximate simple rules will

often be found convenient.

A wrought iron bar one square inch in section and one

yard long weighs ten pounds.
Steel is about two per cent heavier than wrought iron.

Cast iron is about six per cent lighter than wrought iron.

Stone is about one-third the weight of wrought iron.

Brick is about one-fourth the weight of wrought iron.

Timber is about one-twelfth the weight of wrought iron.

For example, consider a bar of wrought iron if X 3 inches and

12 feet long; its cross-section is 4.5 square inches, hence its

weight is 45 X 4 = 1 80 pounds. A steel bar of the same

dimensions will weigh 180 + 0.02 X 1 80 = about 184 pounds,
and a cast iron bar will weigh 180 0.06 X 180 = about 169

pounds.

By reversing the above rules the cross-sections of bars are

readily computed from their weights per yard. Thus, if a stick

of timber 15 feet long weigh 120 pounds, its weight per yard is

24 pounds, and its cross-section is 12 X 2.4 = about 28.8 square
inches.

Problem i. How many square inches in the cross-section of a

wrought iron railroad rail weighing 24 pounds per linear foot ?

In a steel rail? In a wooden beam?
Prob. 2. Find the weights of a wooden beam 6x8 inches in

section and 13 feet long, of a steel bar one inch in diameter and

13 feet long, and of a stone block 18 X 24 inches and 9 feet

long.
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ART. 2. STRESSES AND DEFORMATIONS.

A '

stress
'

is a force which acts in the interior of a body and

resists the external forces which tend to change its shape. If

a weight of 400 pounds be suspended by a rope, the stress in

the rope is 400 pounds. This stress is accompanied by an

elongation of the rope, which increases until the internal molec-

ular stresses or resistances are in equilibrium with the exterior

weight. Stresses are measured in pounds, tons, or kilograms.

A ' unit-stress
'

is the amount of stress on a unit of area ; this is

expressed either in pounds per square inch, or in kilograms per

square centimeter. Thus, if a rope of two square inches cross-

section sustains a stress of 400 pounds, the unit-stress is 200

pounds per square inch, for the total stress must be regarded

as distributed over the two square inches of cross-section.

A 'deformation
'

is the amount of change of shape of a body
caused by the stress. For instance, if a load be put on a

column its length is shortened, and the amount of shortening

is a deformation. So in the case of the rope, the amount of

elongation is a deformation. Deformations are generally meas-

ured in inches, or centimeters.

The word '

strain
'

is often used in technical literature as

synonymous with stress, and sometimes it is also used to desig-

nate the deformation, or change of shape. On account of this

ambiguity the word will not be employed in this book.

Three kinds of simple stress are produced by forces which

tend to change the shape of a body. They are,

Tensile, tending to pull apart, as in a rope.

Compressive, tending to push together, as in a column.

Shearing, tending to cut across, as in punching a plate.

The nouns corresponding to these three adjectives are Tension,

Compression, and Shear. The stresses which occur in beams,
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columns, and shafts are of a complex character, but they may

always be resolved into the three kinds of simple stress. The

first effect of a stress is to cause a deformation in the body.

This deformation receives a special name according to the kind

of stress which produces it. Thus,

Tension produces an elongation.

Compression produces a shortening.

Shear produces a detrusion.

This change of shape is resisted by the stresses between the

molecules of the body, and as soon as these internal resistances

balance the exterior forces the change of shape ceases and the

body is in equilibrium. But if the external forces be increased

far enough the molecular resistances are finally overcome and

the body breaks or ruptures.

In any case of simple stress in a body in equilibrium the

total internal stresses or resistances must equal the external

applied force. Thus, in the above instance of a rope from

which a weight of 400 pounds is suspended, let it be imagined
to be cut at any section ; then equilibrium can only be main-

tained by applying at that section an upward force of 400

pounds ; hence the stresses in that section must also equal 400

pounds. In general, if a steady force P produce either ten-

sion, compression, or shear, the total stress produced is also P,

for if not equilibrium does not obtain. In such cases, then, the

word '

stress
'

may be used to designate the external force as

well as the internal resistances.

Tension and Compression are similar in character but differ

in regard to direction. A tensile stress in a bar occurs when
two forces of equal intensity act upon its ends, each in a direc-

tion away from the other. In compression the direction of the

forces is reversed and each acts toward the bar. Evidently a

simple tensile or compressive stress in a bar is to be regarded
as evenly distributed over the area of its cross-section, so that
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if P be the total stress in pounds and A the area of the cross-

p
section in inches, the unit-stress is -j in pounds per square inch.

Shear requires the action of two forces exerted in parallel

planes and very near together, like the forces in a pair of

shears, from which analogy the name is derived. Here also

the total shearing stress P is to be regarded as distributed

p
uniformly over the area A, so that the unit-stress is j- And

conversely if 5 represent the uniform unit-stress the total stress

Pis AS.

In any case of simple stress acting on a body let P be the

total stress, A the area over which it is uniformly distributed,

and 5 the unit-stress. Then,

(i) P=AS.

Also let A. be the total linear deformation produced by the

stress, / the length of the bar, and s the deformation per unit

of length. Then this deformation is to be regarded as uni-

formly distributed over the distance /, so that also,

(i)' A = Is.

The laws implied in the statement of these two formulas are

confirmed by experiment, if the stress be not too great.

Unit-stress in general will be denoted by S, whether it be

tension, compression, or shear. S
t

will denote tensile unit-

stress, Sc compressive unit-stress, and vSs shearing unit-stress,

when it is necessary to distinguish between them.

Prob. 3. A wrought iron rod i J inches in diameter breaks

under a tension of 67 500 pounds. Find the breaking unit-

stress.

Prob. 4. If a wooden bar i x 3 inches breaks under a tensile

stress of 30 ooo pounds, what stress will break a bar 2x3^
inches?
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ART. 3. EXPERIMENTAL LAWS.

Numerous tests or experiments have been made to ascertain

the strength of materials and the laws that govern stresses and

deformations. The resistance of a rope, for instance, may be

investigated by suspending it from one end and applying

weights to the other. As the weights are added the rope will

be seen to stretch or elongate, and the amotint of this deforma-

tion may be measured. When the load is made great enough
the rope will break, and thus its ultimate tensile stress is

known. For stone, iron, or steel, special machines, known as

testing machines, have been constructed by which the effect of

different stresses on different qualities and forms of materials

may be accurately measured.

All experiments, and all experience, agree in establishing the

five following laws for cases of simple tension and compression,

which may be regarded as the fundamental principles of the

science of the strength of materials.

(A) When a small stress is applied to a body a small de-

formation is produced, and on the removal of the stress

the body springs back to its original form. For small

stresses, then, materials may be regarded as perfectly
elastic.

(B) Under small stresses the deformations are approxi-

mately proportional to the forces, or stresses, which pro-
duce them, and also approximately proportional to the

length of the bar or body.

(C] When the stress is great enough a deformation is

produced which is partly permanent, that is, the body
does not spring back entirely to its original form on re-

moval of the stress. This permanent part is termed a

set. In such cases the deformations are not proportional
to the stresses.
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(D) When the stress is greater still the deformation

rapidly increases and the body finally ruptures.

() A sudden stress, or shock, is more injurious than a

steady stress or than a stress gradually applied.

The words small and great, used in stating these laws, have, as

will be seen later, very different values and limits for different

kinds of materials and stresses.

The 'ultimate strength
'

of a material under tension, com-

pression, or shear, is the greatest unit-stress to which it can be

subjected. This occurs at or shortly before rupture, and its

value is very different for different materials. Thus if a bar

whose cross-section is A breaks under a tensile stress P, the

ultimate tensile strength of the material is P -i- A.

Prob. 5. If the ultimate strength of wrought iron is 55000

pounds per square inch, what tension will rupture a bar 6 feet

long which weighs 60 pounds ?

Prob. 6. If a bar i inch in diameter and 8 feet long elon-

gates 0.05 inch under a stress of 15000 pounds, how much,

according to law (\ will a bar of the same size and material

elongate whose length is 12 feet and stress 30000 pounds?

ART. 4. ELASTIC LIMIT AND COEFFICIENT OF ELASTICITY.

The '
elastic limit

'

is that unit-stress at which the permanent
set is first visible and within which the stress is directly propor-

tional to the deformation. For stresses less than the elastic

limit bodies are perfectly elastic, resuming their original form

on removal of the stress. Beyond the elastic limit a permanent
alteration of shape occurs, or, in other words, the elasticity of

the material has been impaired. It is a fundamental rule in all

engineering constructions that materials can not safely be

strained beyond their elastic limit.

The '

coefficient of elasticity
'

of a bar for tension, compres-

sion, or shearing, is the ratio of the unit-stress to the unit-
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deformation, provided the elastic limit of the material be not

exceeded. Let 5 be the unit-stress, s the unit-deformation, and

E the coefficient of elasticity. Then by the definition,

(2) E = - and 5 = s.

By law (B) the quantity E is a constant for each material, until

S reaches the elastic limit. Beyond this limit s increases more

rapidly than 5 and the ratio is no longer constant. Equation

(2) is a fundamental one in the science of the strength of

materials. Since E varies inversely with s, the coefficient of

elasticity may be regarded as a measure of the stiffness of the

material. The stiffer the material the less is the change in

length under a given stress and the greater is E. The values

of E for materials have been determined by experiments with

testing machines and their average values will be given in the

following articles. E is necessarily expressed in the same unit

as the unit-stress S. Some authors give the name ' modulus of

elasticity
'

to the quantity E.

Another definition of the coefficient of elasticity for the case

of tension is that it is the unit-stress which would elongate a

bar to double its original length, provided that this could be

done without exceeding the elastic limit. That this defini-

tion is in agreement with (2) may be shown by regarding a bar

of length / which elongates the amount A under the unit-
r> . i

stress -r. Here the unit-elongation is 7 and (2) becomes,

P A PI
(2 > E = A*1 = AZ

p
and if A be equal to /, E is the same as the unit-stress -r*A

Prob. 7. Find the coefficient of elasticity of a bar of wrought
iron i inches in diameter and 16 feet long which elongates -J

inch under a tensile stress of 20 ooo pounds.
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Prob. 8. If the coefficient of elasticity of cast iron is 1 5 ooo ooo

pounds per square inch, how much will a bar 2X3 inches and

6 feet long stretch under a tension of 5 ooo pounds ?

ART. 5. TENSION.

The phenomena of tension observed when a gradually in-

creasing stress is applied to a bar, are briefly as follows : When
the unit-stress 5 is less than the elastic limit Se ,

the unit-elon-

gation s is small and proportional to 5. Within this limit the

ratio of S to s is the coefficient of elasticity of the material.

After passing the elastic limit the bar rapidly elongates and

this is accompanied by a reduction in area of its cross-section.

Finally when 6" reaches the ultimate tensile strength S
t ,

the

bar tears apart. Usually St
is the maximum unit-stress on the

bar, but in some cases the unit-stress reaches a maximum

shortly before rupture occurs.

The constants of tension for timber, cast iron, wrought iron

and steel are given in the following table. The values are

average ones* and are liable to great variations for different

grades and qualities of materials. Brick and stone are not

here mentioned, as they are rarely or never used in tension.

Material.
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are the elongations per linear unit ; these should be regarded

as very rough averages, since they are subject to great variations

depending on the shape, size, and quality of the specimen.

The ultimate elongation, together with the reduction in area

of the cross-section, furnishes the means of judging of the duc-

tility of the material. The reduction of area in cast iron and in

many varieties of steel is scarcely perceptible, while in other

varieties of steel and in wrought iron it may be as high as 0.4

of the original section.

A graphical illustration of the principal phenomena of tension

is given in Fig. I. The unit-stresses are taken as ordinates and

100,000

90,000

the unit-elongations as abscissas. For each unit-stress the cor-

responding unit-elongation as found by experiment is laid off,

and curves drawn through the points thus determined. The

curve for each of the materials is a straight line from the origin

until the elastic limit is reached, as should be the case accord-

ing to the law (B}. The tangent of the angle which this line

makes with the axis of abscissas is equal to 5 -f- s, which is the

same in value as the coefficient of elasticity of the material.

At the elastic limit a sudden change in the curve is noticed and

the elongation rapidly increases. The termination of the curve
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indicates the point of rupture. These curves show more

plainly to the eye than the values in the table can do the

differences in the properties of the materials. It will be seen

that the elastic limit is not a well defined point, but that its

value is more or less uncertain, particularly for cast iron and

timber. It should be also clearly understood that individual

curves for special cases would often show marked variations

from their mean forms as represented in the diagram.

As a particular example a

tensile test of a wrought iron

bar f inches in diameter and

12 inches long made at the

Pencoyd Iron Works will be

considered. In the first col-

umn of the following table

are given the total stresses

which were successively ap-

plied, in the second the

stresses per square inch, in

the third the total elonga-

tions, and in the fourth the

elongations or sets after re-

moval of the stress. The

unit-elongations are found by

dividing those in the table

by 12 inches, the length of

the specimen. Then the

coefficient of elasticity can

be computed for different

values of 5 and s. Thus for the fourth and seventh cases,

Total
Stress

in

Pounds.



12 RESISTANCE AND ELASTICITY OF MATERIALS. CH. I.

The elastic limit was reached at about 33 ooo pounds per

square inch, indicated by the beginning of the set and the rapid

increase of the elongations. The ultimate tensile strength of

the specimen was 5 1 600 pounds per square inch. The ultimate

unit-elongation in 8 inches of the length was 0.226 inches per

linear inch. It hence appears that this bar of wrought iron was

higher than the average as regards stiffness, elastic limit and

ductility, and lower than the average in ultimate strength.

The '

working strength
'

of a material is that unit-stress to

which it is, or is to be, subjected. This should not be greater

than the elastic limit of the material, since if that limit be ex-

ceeded there is a permanent set which impairs the elasticity.

In order to secure an ample margin of safety it is customary to

take the working strength at from one-third to two-thirds the

elastic limit Se . The reasons which govern the selection of

proper values of the working strength will be set forth in the

following articles.

To investigate the security of a piece subjected to a tension

P, it is necessary first to divide P by the area of the cross-sec-

tion and thus determine the working strength. Then a com-

parison of this value with the value of Se for the given material

will indicate whether the applied stress is too great or whether

the piece has a margin of safety. For example, if a tensile

stress of 4 500 pounds be applied to a wrought iron bar of

inches diameter the working unit-stress is,

S = :-= = 10 ooo. pounds per square inch, nearly.
Si 0.449

As this is less than one-half the elastic limit of wrought iron the

bar has a good margin of security.

To design a piece to carry a given tension P it is necessary

to assume the kind of material to be used and its allowable

p
working strength S. Then -= is the area of the cross-section
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of the piece, which may be made of such shape as the circum-

stances of the case require. For example, if it be required to

design a wooden bar to carry a tensile stress of 4 500 pounds,

the working strength may be assumed at I ooo pounds per

square inch and the required area is 4.5 square inches, so that

the bar may be made 2 X 2j inches in section.

The elongation of a bar within the elastic limit may be com-

puted by the help of formula (2). For instance, let it be re-

quired to find the elongation of a wooden bar 3X3 inches and

12 feet long under a tensile stress of 9 ooo pounds. From the

formulas (2) and (i),

E- S - P * K- Pl
~
7
~

'A
^

/
'

~ AE
Substituting in this the values E = I 500000, A = 9, / 144,

and P = 9 ooo, the probable value of the elongation X is found

to be 0.096 inches.

Prob. 9. Find the size of a round wrought iron rod to safely

carry a tensile stress of 100 ooo pounds.
Prob. 10. Compute the elongation of a wooden and of a cast

iron bar, each being 2X3 inches and 16 feet long, under a ten-

sile stress of 6 ooo pounds.

ART. 6. COMPRESSION.

The phenomena of compression are similar to those of ten-

sion, provided that the length of the specimen does not exceed

about five times its least diameter. The piece at first shortens

proportionally to the applied stress, but after the elastic limit is

passed the shortening increases more rapidly, and is accom-

panied by a slight enlargement of the cross-section. When the

stress reaches the ultimate strength of the material the specimen
cracks and ruptures. If the length of the piece exceeds about

ten times its least diameter, a sidewise bending or flexure of

the specimen occurs, so that it fails under different circum-



RESISTANCE AND ELASTICITY OF MATERIALS. ClI. I.

stances than those of direct compression. All the values given
in this article refer to specimens whose lengths do not exceed

about five times their least diameter. Longer pieces will be

discussed in Chapter V under the head of 'columns.' Owing
to the difficulty of making experiments on short specimens, the

phenomena of compression are not usually so regular as those

of tension.

The constants of compression for short specimens are given

in the following table, the values, like those for tension, being

rough average values liable to much variation in particular

cases.

Material.
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Prob. ii. Find the height of a brick tower which crushes

under its own weight. Also the height of a stone tower.

Prob. 12. Compute the amount of shortening in a wrought
iron specimen i inch in diameter and 5 inches long under a load

of 6000 pounds.

ART. 7. SHEAR.

Shearing stresses and strains occur whenever two forces, act-

ing like a pair of shears, tend to cut a body between them.

When a plate is punched the ultimate shearing strength of the

material must be overcome over the surface punched. When
a bolt is in tension the applied stress tends to shear off the

head and also to strip or shear the threads in the nut and screw.

When a rivet connects two plates which transmit tension the

plates tend to shear the rivet across.

The ultimate shearing strength of materials is easily deter-

mined by causing rupture under a stress P, and then dividing

P by the area A of the shorn surface. The value of this for

timber is found to be very much smaller along the grain than

across the grain ;
for the first direction it is sometimes called

longitudinal shearing strength and for the second transverse

shearing strength. The same distinction is sometimes made

in rolled wrought iron plates and bars where the process of

manufacture induces a more or less fibrous structure. The

elastic limit and the amount of detrusion for shearing are dif-

Material.
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ficult to determine experimentally. The coefficient of elas-

ticity, however, has been deduced by means of certain calcula-

tions and experiments on the twisting of shafts, explained in

Chapter VI under the head of torsion.

The investigation and design of a piece to withstand shear-

ing stress is made by means of the equation P = AS, in

the same manner as for tension and compression. As an

instance of investigation,

v^x * ''' ^ ^=* wooden specimen shown
Fig ' 2 -

in Fig. 2, which has the

following dimensions : length ab = 6 inches, diameter of ends

= 4 inches, diameter of central part = 2. inches. Let this

specimen be subjected to a tensile stress in the direction of its

length. This not only tends to tear it apart by tension, but

also to shear off the ends on a surface whose length is ab and

whose diameter is that of the central cylinder. The force P
required to cause this longitudinal shearing is,

P = AS, = 3.14 X2X6x6oo = 22 600 pounds,

while the force required to rupture the specimen by tension is,

P= ASt
= 3.14 X i* X 10 ooo = 31 400 pounds.

As the former resistance is only about two-thirds that of the

latter the specimen will evidently fail by the shearing off of

the ends.

When a bar is subject either to tension or to compression
a shear occurs in any section except those perpendicular and

parallel to the axis of the bar.

Let Fig. 3 represent a bar of

cross-section A subject to the

tensile stress P which produces

Fig. 3. in every section perpendicular

to the bar the unit-stress . Let mn be a plane making an
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angle with the axis, and cutting from the bar a section whose

area is A
1

. On the left of the plane the stress P may be resolved

into the components P, and P, , respectively parallel and nor-

mal to the plane, and the same may be done on the right.

Thus it is seen that the effect of the tensile stress P on the

plane mn is to produce a tension P, -normal to it, and a shear

P, along it, for the two forces P
}
and P

1
act in parallel planes

and in opposite directions. The shearing stress P
l
has the

value P cos 0, which is distributed over the area A
l
whose

value is A -~- sin 8. Hence the shearing unit-stress in the

given section is,

P P
5, = f-

=
-j sin cos 0.

si
j

/i

When e = o, or d = 90, the value of S
t
is zero. The maxi-

pmum value of 5, occurs when = 45, and then 5, = ,
or

yi

a tensile unit-stress S on a bar produces a shearing unit-stress

of S along every section inclined 45 degrees to the axis of the

bar. The above investigation applies also to compression if

the direction of P be reversed, and it is sometimes observed in

experiments on the compression of short specimens that rup-

ture occurs by shearing along oblique sections.

Prob. 1 3. A hole inches in diameter is punched in a wrought
iron plate f inches thick by a pressure on the punch of 78 ooo

pounds. What is the ultimate shearing strength of the iron?

Prob. 14. A wrought iron bolt i inches in diameter has a

head f inches long. Find the unit-stress tending to shear off

the head when a tension of 3 ooo pounds is applied to the bolt.

ART. 8. FACTORS OF SAFETY AND WORKING STRESSES.

The factor of safety for a body under stress is the ratio of its

ultimate strength to the actual existing unit-stress. The factor

of safety for a piece to be designed is the ratio of the ultimate



IS RESISTANCE AND ELASTICITY OF MATERIALS. CH. I.

strength to the proper allowable working strength. Thus if S
t

be the ultimate, 5 the working strength, and f the factor of

safety, then

/ = '

,
and St

= fS.

The factor of safety is hence always an abstract number, which

indicates the number of times the working stress may be mul-

tiplied before the rupture of the body.

The law (E) in Art. 3 indicates that working stresses should

be lower for shocks and sudden stresses than for steady loads

and slowly varying stresses. In a building the stresses on the

walls are steady, so that the working strength may be taken

high and hence the factor of safety low. In a bridge the

stresses in the several members are more or less varying in

character which requires a lower working strength and hence

a higher factor of safety. In a machine subject to shocks the

working strength should be lower still and the factor of safety

very high. The law (E) from which these conclusions are de-

rived is not merely the result of experience, but can be con-

firmed by theoretical discussion (Art. 80).

The following are average values of the allowable factors of

safety commonly employed in American practice. These values

Material.
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material, but also on account of the varying judgment of

designers. They will also vary with the range of varying stress,

so that different parts of a bridge may have very different

factors of safety.

The proper allowable working strength of any material for

tension, compression, or shearing, may be at once found by

dividing the ultimate strength by the proper factor of safety.

Regard should also be paid to the elastic limit in selecting the

working strength, particularly for materials whose elastic limit

is well defined. For wrought iron and steel the working

strength should be well within the elastic limit, as already in-

dicated in previous articles. For cast iron, stone, brick, and

timber it is often difficult to determine the elastic limit, and

experience alone can guide the proper selection of the working

strength. The above factors of safety indicate indeed the con-

clusions of experiment and experience extending over the past

hundred years.

The student should clearly understand that the exact values

given in this and the preceding articles would not be arbitrarily

used in any particular case of design. For instance, if a given

lot of wrought iron is to be used in an engineering structure,

specimens of it should be tested to determine its coefficient of

elasticity, elastic limit, ultimate strength, and percentage of

elongation. Then the engineer will decide upon the proper

working strength, being governed by its qualities as shown by
the tests, the character of the stresses that come upon it, and

the cost of workmanship.

The two fundamental principles of engineering design are

stability and economy, or in other words :

First, the structure must safely withstand all the stresses

which are to be applied to it.

Second, the structure must be built and maintained at the

lowest possible cost.
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The second of these fundamental principles requires that all

parts of the structure should be of equal strength, like the

celebrated 'one-hoss shay' of the poet. For, if one part is

stronger than another, it has an excess of material which might
have been spared. Of course this rule is to be violated if the

cost of the labor required to save the material be greater than

that of the material itself. Thus it often happens that some

parts of a structure have higher factors of safety than others,

but the lowest factors should not, as a rule, be less than the

values given above. For the design of important structures

specifications are prepared which state the lowest allowable

unit-stresses that can be used.

The factors of safety stated above are supposed to be so

arranged that, if different materials be united, the stability of

all parts of the structure will be the same, so that if rupture

occurs, everything would break at once. Or, in other words,

timber with a factor of safety 8 has about the same reliability

as wrought iron with a factor of 4 or stone with a factor of 15,

provided the stresses are due to steady loads.

The assignment of working strengths with regard to the

elastic limits of materials is more rational than that by means

of the factors of safety, and in time it may become the more

important and valuable method. But at present the ultimate

strengths are so much better known and so much more definitely

determinable than the elastic limits that the empirical method

of factors of safety seems the more important for the use of

students, due regard being paid to considerations of stiffness,

elastic limit, and ductility.

As an example, let it be required to find the proper size of a

wrought iron rod to carry a steady tensile stress of 90000

pounds. In the absence of knowledge regarding the quality

of the wrought iron, the ultimate strength St
is to be taken as
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the average value, 55 ooo pounds per square inch. Then, for a

factor of safety of 4, the working strength is,

6" = = 13 750 pounds per square inch.
4

The area of cross-section required is hence,

90 oooA = = 6.6 square inches,

which may be supplied by a rod of 2^ inches diameter.

Prob. 15. Determine the size of a short steel piston rod when
the piston is 20 inches in diameter and the steam pressure upon
it is 67.5 pounds per square inch.

Prob. 16. A wooden frame ABC forming an equilateral tri-

angle consists of short pieces 2X2 inches jointed at A, B, and

C. It is placed in a vertical plane and supported at B and C
so that BC is horizontal. Find the unit-stress and factor of

safety in each of the three pieces when a load of 6 ooo pounds
is applied at A.
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CHAPTER II.

PIPES, CYLINDERS, AND RIVETED JOINTS.

ART. 9. WATER AND STEAM PIPES.

The pressure of water or steam in a pipe is exerted in every

direction, and tends to tear the pipe apart longitudinally. This

is resisted by the internal tensile stresses of the material. If

/ be the pressure per square inch of the water or steam, d the

diameter of the pipe and / its length, the force P which tends

to cause longitudinal rupture is p . Id. This is evident from the

fundamental principle of hydrostatics that the pressure of water

in any direction is equal to the pressure on a plane perpen-

dicular to that direction, or may be seen by imagining the pipe

to be filled with a solid substance on one side of the diameter,

which would receive the pressure/ on each square inch of the

area /and transmit it into the pipe. If t be the thickness of

the pipe and 5 the tensile stress which is uniformly distributed

over it, as will be the case when t is not large compared with

d, the resistance on each side is // . S. As the resistance must

equal the pressure,

pld = 2tlS, or pd = 2/5,

which is the formula for discussing pipes under internal pressure.

The unit-pressure/ for water may be computed from a given

head h by rinding the weight of a column of water one inch

square and h inches high. Or if h be giVen in feet, the pressure

in pounds per square inch may be computed from / = 0.434/4.

Water pipes maybe made of cast or wrought iron, the former

being more common, while for steam the latter is preferable.
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Wrought iron pipes are sometimes made of plates riveted to-

gether, but the discussion of these is reserved for another

article. A water pipe subjected to the shock of water ram

needs a high factor of safety, and in a steam pipe the factors

should also be high, owing to shocks liable to occur from con-

densation and expansion of the steam. The formula above

deduced shows that the thickness of a pipe must increase

directly as its diameter, the internal pressure being constant.

For example, let it be required to find the factor of safety

for a cast iron water pipe of 12 inches diameter and
-|

inches

thickness under a head of 300 feet. Here p, the pressure per

square inch, equals 130.2 pounds. Then from the formula the

unit-stress is,

pd 130.2 X 12
5 = ^ - =- = = i 250 pounds per square inch,

2* 2 X -g-

and hence the factor of safety is,

20000

which indicates ample security under ordinary conditions.

Again let it be required to find the proper thickness for a

wrought iron steam pipe of 18 inches diameter to resist a pres-

sure of 1 20 pounds per square inch. With a factor of safety

of 10 the working strength 5 is about 5 500 pounds per square
inch. Then from the formula,

pd 120 X 18 . ,

t = ! =-- = 0.2 inches.
2S 2x5 5oo

In order to safely resist the stresses and shocks liable to occur

in handling the pipes, the thickness is often made somewhat

greater than the formula requires.

Prob. 17. What should be the thickness of a cast iron pipe
of 1 8 inches diameter under a head of 300 feet?

Prob. 1 8. A wrought iron pipe is 3 inches in internal diame-
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ter and weighs 24 pounds per linear yard. What steam pres-

sure can it carry with a factor of safety of 8 ?

ART. 10. THIN CYLINDERS AND SPHERES.

A cylinder subject to the interior pressure of water or steam

tends to fail longitudinally exactly like a pipe. The head of

the cylinder however undergoes a pressure which tends to

separate it from the walls. If d be the diameter of the cylin-

der and / the internal pressure per square unit, the total pres-

sure on the head is ^nd* .p. US be the working unit-stress

and t the thickness of the cylinder, the resistance to the pres-

sure is approximately itdtS, if / be so small that 5 is uniformly

dtstributed. Since the resistance must equal the pressure,

%nd* . / = ndt . 5, or pd = tfS.

By comparing this with the formula of the last article it is seen

that the resistance of a pipe to transverse rupture is double the

resistance to longitudinal rupture.

A thin sphere subject to interior pressure tends to rupture

around a great circle, and it is easy to see that the conditions

are exactly the same as for the transverse rupture of a cylin-

der, or that pd = 4/S. For thick spheres and cylinders the

formulas of this and the last article are only approximate.

A cylinder under exterior pressure is theoretically in a simi-

lar condition to one under interior pressure as long as it re-

mains a true circle in cross-section. A uniform interior pres-

sure tends to preserve and maintain the circular form of the

cylindrical annulus, but an exterior pressure tends at once to

increase the slightest variation from the circle and render it

elliptical. The distortion when once begun rapidly increases,

and failure occurs by the collapsing of the tube rather than by
the crushing of the material. The flues of a steam boiler are

the most common instance of cylinders subjected to exterior
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pressure. In the absence of a rational method of investigating

such cases recourse has been had to experiment. Tubes of

various diameters, lengths, and thicknesses have been subjected

to exterior pressure until they collapse and the results have

been compared and discussed. The following for instance are

the results of three experiments by FAIRBAIRN on wrought
iron tubes.

Length
in

Inches.
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Prob. 19. What interior pressure per square inch will burst

a cast iron sphere of 24 inches diameter and f inches thickness.

Prob. 20. What exterior pressure per square inch will col-

lapse a wrought iron tube 72 inches long, 4 inches diameter and

0.25 inches thickness?

ART. ir. THICK CYLINDERS.

When the walls of a cylinder are thick compared with its

interior diameter it cannot be supposed, as in the preceding

articles, that the stress is uniformly distributed over the thick-

ness t. Let Fig. 4 represent one-half of a section of a thick

cylinder subject to interior pressure

over the length /, tending to produce

longitudinal rupture. Let r and r
l

be the interior and exterior radii,

then r
v

r = t the thickness. Let

5 and 5, be the tensile unit-stresses

at the inner and outer edges of the

Fi*-4- annulus. Before the application of

the pressure the volume of the annulus is n(r* r
2

)/,
after the

pressure is applied the radius r
l
is increased to r, -j- Ji and r to

r -j- y, so that its volume is 7t(r l -|- y^fl n(r -j- y}*l. The an-

nulus is however really changed only in form, so that the two

expressions for the volume are equal, and equating them gives,

or, since y and yl
are small compared with r and r

l
their

squares may be neglected, and hence

y r
->

ry = r
ly l ,

or ^- = -
.

Now if the material is not stressed beyond the elastic limit the

unit-stresses 5" and S
l
are proportional to the corresponding

unit-elongations. The elongation of the inner circumference

is 2ity and that of the outer circumference is 2rty l ,
and divid-
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ing these by 2nr and 2nr
l respectively the unit-elongations are

found; then,

S, r r, r y

Substituting in this the value of the ratio as above found,

gives

that is, the unit-stresses in the walls of the cylinder vary in-

versely as the squares of their distances from the center.

The total stress acting over the area 2t . / is now to be found

by summing up the unit-stresses. Let Sx be any unit-stress at

a distance x from the center, and S, as before, be that at the

inner circumference, which is the greatest of all the unit-stresses.

Then by the law of variation,

The stress acting over the area /. dx is then

and the total stress over the area 2t . / is

r + t

This is the value of the internal resisting stress in the walls of

the pipe ; if / be neglected in comparison with r it reduces to

2Slt which is the same as previously found for thin cylinders ;

if t = r it becomes Sit or only one-half the resistance of a thin

cylinder.

The total interior pressure which tends to rupture the cylin-

der longitudinally is 2rl . p, if p be the unit-pressure (Art. 9).
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Equating this to the total internal resisting-stress gives the

formula,

from which one of the quantities S, p, r, or t can be computed
when the other three are given. For instance, let this be ap-

plied to the same example as in Art. 9, where/ = 130.2 pounds

per square inch, 2r = 12 inches, / = f inch, and the value of 5
is required, then

S = -f p = 1250+ 130 = 1380 pounds per square inch,

which is about 10 per cent greater than the value found by the

approximate formula for thin pipes.

Prob. 21. Prove when the thickness of a pipe equals its in-

terior radius that the exterior circumference elongates one-half

as much as the interior circumference.

Prob. 22. If. a gun of 3 inches bore is subject to an interior

pressure of I 8oc pounds per square inch, what should be its

thickness so that the. greatest stress on the material may not

exceed 3 ooo pounds per square inch ?

ART. 12. INVESTIGATION OF RIVETED JOINTS.

When two plates which are under tension are joined together

by rivets, these must transfer that tension from one plate to

another. A shearing stress is thus brought upon each rivet

which tends to cut it off. A compressive stress is also brought

sidewise upon each rivet which tends to crush it ; this particu-

lar kind of compression is often called "bearing stress." The

exact manner in which it acts upon the cylindrical surface of

the rivet is not known, but it is usually supposed to be equiva-

lent to a stress uniformly distributed over the projection of the

surface on a plane through the axis of the rivet.

Case I. Lap Joint with single riveting. Let P be the tensile

stress which is transmitted from one plate to the other by
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means of a single rivet, t the thickness of the plates, d the

diameter of a rivet, and a the pitch of the rivets. Let St , 5,,

and St be the unit-stresses in

tension, shear, and compression

produced by P upon the plates

and rivets. Then for the ten-

sion on the plate,

for the shear on the rivet,

and for compression on the rivet,
Fig. 5-

P = td.Se .

From these equations the unit-stresses may be computed, when

the other quantities are known, and by comparing them with

the proper working unit-stresses the degree of security of the

joint is estimated.

Case II. Lap Joint with double riveting. In this arrange-

ment the plates have a wider lap, /^"X "v
and there are two rows of rivets. '

^
^

-\

Let a be the pitch of the rivets in

one row, then the tensile stress P is

distributed over two rivets, and the

three formulas are,

P=t(a-d}St ,

P= 2.tdSc ,

from which the unit-stresses may be

computed and the strength of the

joint be investigated. The loss of Fig . 6 .

strength is here generally less than in the previous case since a

can be made larger with respect to d.
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Case III. Butt Joint with single riveting. For this arrange-

^ ^ ^ >. ment the shear on each of

tne rivets comes on two

cross-sections, which is said

Fig. 7. to be a case of double shear,

and the formulas are,

P=t(a- d)St ,
= 2 . nd*Sg

= tdSe .

Accordingly, a lap joint with double riveting has the same ten-

sile and shearing strength as a butt joint with single riveting,

if the values of
, d, and t be equal in the two cases ; the bear-

ing resistance, however, is only one half as large.

For example, let it be required to investigate a single riveted

butt joint consisting of plates 0.75 inches thick with covers

0.375 inches thick, and rivets of I inch diameter and 4 inches

pitch, when a tension of 8 ooo pounds is transmitted through
one rivet. First, the working tensile unit-stress on the plate is

found to have the value,

8000
St
= = 3 560 pounds per square inch.

Next the shearing unit-stress on the rivets is,

8000
os
= x =

5 100 pounds per square inch.
2 X 0.7^5

Lastly, the bearing compressive unit-stress on the rivets is,

8000
Sc
= = 10 700 pounds per square inch.

It thus appears that the joint has the greatest factor of safety

against tension and the least against compression of the rivets.

It should be said, however, that for wrought iron plates and

rivets the highest allowable working stresses for tension, shear,

and bearing are generally considered to be about 9 ooo, 7 500,

and 1 2 ooo pounds per square inch respectively; hence the
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joint has proper security under the given conditions although

the degree of security is quite different for the different

stresses.

The '

efficiency
'

of a joint is defined to be the ratio of its

highest allowable stress to the highest allowable stress of the

unriveted plate. The highest allowable stresses in tension,

shear, and compression are the three expressions for P, using,

for wrought iron, the values above mentioned
;
and the highest

allowable stress of the unriveted plate is atSt . Thus result the

following values of the efficiency,

a d
For tension, e =-
For shear,

m . dSc

For compression, e = ^r ,

in which m denotes the number of rivets in the width a which

transmit the tension P and n denotes the number of rivet-sec-

tions in the same space over which the shear is distributed.

The smallest of these values of e is to be taken as the efficiency

of the joint. Thus for the above numerical example the three

values are 0.75, 0.44, and 0.33 ; the working strength of the

joint is, hence, only 33 per cent of that of the unriveted plate.

If in the above formulas, St ,
Ss ,

and Sc be taken as the ulti-

mate strengths, the resulting values of e will be the efficiencies

at the moment of rupture of the joint. For the same numerical

example the three ultimate efficiencies are 0.75, 0.48, and 0.25.

Prob. 23. A boiler is to be formed of wrought iron plates f
inches thick, united by single lap joints with rivets f inches

diameter and if inches pitch. Find the efficiency of the joint.

Find the factor of safety of the boiler if it is 30 inches in di-

ameter and carries a steam pressure of 100 pounds.
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ART. 13. DESIGN OF RIVETED JOINTS.

A theoretically perfect joint with regard to strength is one

so arranged that all parts (like the one-hoss shay) have the

same degree of security. Thus the resistance of the plate to

tension must equal the resistance of the rivets to shearing, and

each of these must equal the resistance of the rivets to com-

pression. The three expressions for P of the last Article should

hence be equal, or, what amounts to the same thing, the three

efficiencies should be equal. Equating then the second to the

third and solving for d, gives

from which d can be computed when / is assumed. Again,

equating the first and third and eliminating d gives,

AfinSc I mSc\

from which the pitch of the rivets can be obtained. Inserting
these values of d and a in either of the expressions for e fur-

nishes the formula,

'~+j5'
from which the efficiency can be ascertained. The best joint
will be that which has the least loss of strength due to the

riveting, or that which has a value of e as near unity as possible.

Using for wrought iron plates and rivets the working unit-

stresses St
= 9000, 5S

= 7 500, and Sc 12000 pounds per

square' inch, the above formulas for a lap joint with single row
of rivets where m i and n = i, reduce to,

d = 2.04/, a = 4.75^, e 0.57,

so that, if the thickness of the plate be given and the diameter

and pitch of the rivet be made according to these ruks, the
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joint has about 57 per cent of the strength of the unholed

plate. For a lap joint with double riveting where m = 2 and

n = 2, they become

d = 2.O4/, a 7.48^, e = 0.73.

This example shows clearly the advantage of double over single

riveting, and by adding a third row the efficiency will be raised

to about 80 per cent.

The application of the above formulas to butt joints makes

the diameter of the rivet equal to the thickness of the plate

and makes the pitch much smaller than the above values for

lap joints. These proportions are difficult to apply in practice

on account of the danger of injuring the metal in punching the

holes. For this reason joints are often made in which the

strengths of the different parts are not equal. Many other

reasons, such as cost of material and facility of workmanship,
influence also the design of a joint so that the formulas above

deduced are to be regarded only as a rough guide. The old

rules which are still often used for determining the pitch in butt

joints, are

the first being for single and the second for double riveting.

These are deduced by making the strength of the joint equal
in tension and shear, and taking 5 S

= S
t

.

It may be required to arrange a joint so as to secure eithei

strength or tightness. For a bridge, strength is mainly needed ;

for a gasholder, tightness is the principal requisite; while for a

boiler both these qualities are desirable. In general a tight

joint is secured by using small rivets with a small pitch. The

lap of the plates, and the distance between the rows of rivets,

is determined by practical considerations rather than by
theoretic formulas.
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Prob. 24. A lap joint with double riveting is to be formed

of plates inches thick with rivets f inches diameter. Find

the pitch so that the "strength of the plate shall equal the

shearing strength of the rivets, and compute the efficiency of

the joint.

ART. 14. MISCELLANEOUS EXERCISES.

It will be profitable to the student to thoroughly perform the

following exercises and problems and to write upon each a

detailed, report, which should contain all the sketches and

computations necessary to clearly explain the data, the reason-

ing, the computations, and the conclusions. Problem 26 is

intended for students proficient in the use of calculus.

Exercise I. Visit an establishment where tensile tests are

made. Ascertain the kind of machine employed, its capacity,

the method of applying the stresses, the method of measuring
the stresses, the method of measuring the elongations. Ascer-

tain the kind of material tested, the reason for testing it, and

the conclusions derived from the tests. Give full data for the

tests on four different specimens, compute the values of co-

efficient of elasticity, ultimate strength and ultimate elongation
for them, and state your conclusions.

Exercise 2. Procure a wrought iron bolt and nut. Measure

the diameter of bolt, length of head, and length of nut. State

the equation of condition that the head of the bolt may shear

off at the same time the bolt ruptures under tension. Com-

pute the length of head for a given diameter. Explain why
the length of the head is made greater than theory apparently

requires. Compile a table giving dimensions of bolts and nuts

of different diameters.

Exercise 3. Go to a boiler shop and witness operations upon a

boiler in process of construction. Ascertain length and diameter

of boiler, thickness, pitch and diameter of rivets, method of

forming holes, method of doing the riveting. Compute the loss

of strength caused by the riveting. Compute the steam pressure
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which would cause longitudinal rupture of the plate along a

line of rivets. Ascertain whether the joint is proportioned in

accordance with theory.

Prob. 25. A wrought iron pipe f inches thick and 20 inches

in diameter is to be subjected to a head of water of 345 feet.

Compute the probable increase in diameter due to the interior

pressure, regarding the pipe as thin.

Prob. 26. Let a pier whose top width is b and length / support
a uniformly distributed load P. Let the width of the pier at a

distance y below the top be x, its constant length being / at all

horizontal sections. Let w be the weight of the masonry per
cubic foot. Prove that, in order to make the compressive
unit-stress the same for all horizontal sections, the profile of

the pier must be such as to satisfy the equation y = log,,
-j-

in which 6" = -7-7.
bl
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CHAPTER III.

CANTILEVER BEAMS AND SIMPLE BEAMS.

ART. 15. DEFINITIONS.

Transverse stress, or flexure, occurs when a bar is in a

horizontal position upon one or more supports. The weight

of the bar and the loads upon it cause it to bend and induce

in it stresses and strains of a complex nature which, as will be

seen later, may be resolved into those of tension, compression,

and shear. Such a bar is called a beam.

A simple beam is a bar resting upon supports at its ends.

A cantilever beam is a bar on one support in its middle, or the

portion of any beam projecting out of a wall or beyond a sup-

port may be called a cantilever beam. A continuous beam is

a bar resting upon more than two supports. In this book the

word beam, when used without qualification, includes all kinds,

whatever be the number of the supports, or whether the ends

be free, supported, or fixed.

The elastic curve is the curve formed by a beam as it deflects

downward under the action of its own weight and of the loads

upon it. Experience teaches that the amount of this deflection

and curvature is very smll. A beam is said to be fixed at one

end when it is so arranged that the tangent to the elastic curve

at that end always remains horizontal. This may be done in

practice by firmly building one end into a wall. A beam fixed

at one end and unsupported at the other is a cantilever beam.

The loads on beams are either uniform or concentrated. A
uniform load embraces the weight of the beam itself and any
load evenly spread over it. Uniform loads are estimated by
their intensity per unit of length of the beam, and usually in
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pounds per linear foot. The uniform load per linear unit is

designated by /, then wx will represent the load over any
distance x. If / be the length of the beam, the total uniform

load is wl which may be represented by W. A concentrat-

ed load is a weight applied at a definite point and is desig-

nated by P.

In this chapter cantilever and simple beams will be princi-

pally discussed, although all the fundamental principles and

methods hold good for restrained and continuous beams as

well. Unless otherwise stated the beams will be regarded as

of uniform cross-section throughout, and in computing their

weights the rules of Art. I will be found of service.

Prob. 27. Find the diameter of a round steel bar which

weighs 48 pounds, its length being 4 feet.

ART. 16. REACTIONS OF THE SUPPORTS.

The points upon which a beam is supported react upward

against the beam an amount equal to the pressure of the beam

upon them. The beam, being at rest, is a body in equilibrium

under the action of a system of forces which consist of the

downward loads and the upward reactions. The loads are

usually given in intensity and position, and it is required to

find the reactions. This is effected by the application of the

fundamental conditions of static equilibrium, which for a

system of vertical forces, are,

2 of all vertical forces = o,

2 of moments of all forces = o.

The first of these conditions says that the sum of all the

loads on the beam is equal to the sum of the reactions. Hence

if there be but one support, this condition gives at once the

reaction.

For two supports the second condition must be used in con-

nection with the first. The center of moments may be taken
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anywhere in the plane, but it is more convenient to take it at one

of the supports. For example, consider a single concentrated

load P situated at 4 feet from the

IP left end of a simple beam whose

4 span is 13 feet. The equation of

r
moments, with the center at the

Fig. 8.

I* "*
left support, is 13^-4^ =
from which R, = -feP. Again the

equation of moments, with the center at the right support, is

13^, 9/>= o, from which R^ ^jP- As a check it may be

observed that R, + R
t
= P.

For a uniform load over a simple beam it is evident, without

applying the conditions of equilibrium, that each reaction is

one-half the load.

The reactions due to both uniform and concentrated loads

on a simple beam may be obtained by adding together the

reactions due to the uniform load and each concentrated load,

or they may be computed in one operation. As an example
of the latter method let Fig. 9 represent a simple beam 12 feet

in length between the supports and weighing 35 pounds per

. linear foot, its total weight

! 31^2^3-'^ 4.' 4
being 420 pounds. Let

L =^ there be three concentrated

\KI
-Rsj

loads of 300, 60, and 150
Fig - 9>

pounds placed at 3, 5, and

8 feet respectively from the left support. To find the right
reaction R, the center of moments is taken at the left support,
and the weight of the beam regarded as concentrated at its

middle
;
then the equation of moments is,

R, X 12 = 420 X 6+ 300 X 3 + 60 X 5 + 150 X 8

from which ^, = 410 pounds. In like manner to find R, the

center of moments is taken at the right support, and

R, x 12 = 420 x 6+ 300x9+ 60 x 7+150x4
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from which R^ = 520 pounds. As a check the sum of R
l
and

R
9
is seen to be 930 pounds which is the same as the weight of

the beam and the three loads.

When there are more than two supports the problem of find-

ing the reactions from the principles of statics becomes inde-

terminate, since two conditions of equilibrium are only sufficient

to determine two unknown quantities. By introducing, how-

ever, the elastic properties of the material, the reactions of

continuous beams may be deduced, as will be explained in

Chapter IV.

Prob. 28. A simple beam 12 feet long weighs 20 pounds per
linear foot and carries a load of 500 pounds. Where should

this load be put so that one reaction may be double the other ?

Prob. 29. A simple beam weighing 30 pounds per linear foot

is 1 8 feet long. A weight of 700 pounds is placed 5 feet from

the left end and one of 500 pounds at 8 feet from the right

end. Find the reactions due to the total load.

ART. 17. THE VERTICAL SHEAR.

When a beam is short it sometimes fails by shearing in a

vertical section as shown in Fig. 10. The external force which

produces this shearing on any section

is the resultant of all the vertical forces

on one side of that section. Thus, in

the second diagram the resultant of all

these external forces is the loads and

the weight of the part of the beam on

the left of the section
;
in the third dia-

gram the resultant is the loads and the

weight on the right, or it is reaction at Fig. 10.

the wall minus the weight of the beam between the wall and

the section.

'Vertical Shear
'

is the name given to the algebraic sum of

all external forces on the left of the section considered. Let
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it be denoted by V, then for any section of a simple or can-

tilever beam,

V= Left reaction minus all loads on left of section.

Here upward forces are regarded as positive and downward

forces as negative. V is hence positive or negative according

as the left reaction exceeds or is less than the loads on the left

of the section. To illustrate, consider a simple beam loaded

in any manner and cut at any sec-

pi
Ft I Jp tion by a vertical plane mn. Let

I

*
l|

t ~1
R

1
be the left and R, the right re-

||F ? action. Let 2P
t
denote the sum

-B
'l of all the loads on the left of the

Fig - " section and 2P^ the sum of those

on the right. Then, from the definition,

V-R, -2P,.
Since R, -f R, = 2P> + 2P

9
it is clear if R, 2P, = +V

that R, 2P, = V, or that the resultant of all the external

forces on one side of the section is equal and opposite to the

resultant of those on the other side. They form, in short, a

pair of shears acting on opposite sides of the section and tend-

ing to cause a sliding or detrusion along the section. The
value of the vertical shear for any section of a simple beam or

cantilever is readily found by the above equation. When R
1

exceeds 2P
t , the vertical shear V is positive, and the left part

of the beam tends to slide upward relative to the right part.

When R
t

is less than 2P, ,
the vertical shear V is negative,

and the left part tends to slide downward relative to the other.

In the upper diagram of Fig. 10 the shear in the left hand sec-

tion is positive and that in the right hand section is negative.

The vertical shear varies greatly in value at different sections

of a beam. Consider first a simple beam / feet long and weigh-

ing w pounds per linear foot. Each reaction is then %wl.

Pass a plane at any distance x from the left support, then from
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the definition the vertical shear for that section is V=^ \wl wx.

Here it is seen that V has its greatest value \wl when x = o,

that V decreases as x increases,
^ ^ ^

and that F becomes o when x = \l. f~ ~"1

When x is greater than /, F is

negative and becomes \wl when

x L The equation V=.\wl wx
is indeed the equation of a straight Fig. 12.

line, the origin being at the left support, and may be plotted

so that the ordinate at any point will represent the vertical

shear for the corresponding section of the beam, as shown

in Fig. 12.

Consider again a simple beam as in Fig. 13 whose span is 12

feet and having three loads of 240, 90, and 120 pounds, situated

3, 4, and 8 feet respectively from

the left support, By Art. 16 the

left reaction is found to be 280

and the right reaction 170 pounds.

Then for any section between the

left support and the first load

the vertical shear is V = -f- 280

pounds, for a section between the Fig. 13.

first and second loads it is V= 280 240 = -f- 40 pounds, for

a section between the second and third loads V= 280 240

90 50 pounds,, and for a section between the third load

and the right support V = 280 240 90 120 = 170

pounds, which has the same numerical value as the right reac-

tion. By laying off ordinates upon a horizontal line a graphical

representation of the distribution of vertical shears throughout
the beam is obtained.

For any section of a simple beam distant x from the left

support, let R
t
denote the left reaction, w the weight of the

uniform load per linear unit, and 2P^ the sum of all the con-
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centrated loads between the section and that support. Then

the definition gives,

fe

as a general expression for the vertical shear at that section.

A cantilever beam can be so drawn that there is no reaction

at the left end, and for any section V = wx 2P, .

Thus, in Fig. 14, the vertical

shear for a section in the

space a is V= wx, and for

a section in the space b it is

V= ivxP, and the graphi-

cal representation is as shown

Fig. M. below the beam.

The vertical shear for any section of a beam is a measure of

the tendency to shearing along that section. The above ex-

amples show that this is greatest near the supports. It is rare

that beams actually fail in this manner, but it is often necessary

to investigate the tendency to such failure.

Prob. 30. A simple beam 12 feet long and weighing 20

pounds per linear foot has loads of 600 and 300 pounds at 2

and 4 feet respectively from the left end. Find the vertical

shears at several sections throughout the beam, and draw a

diagram to show their distribution.

ART. 1 8. THE BENDING MOMENT.

The usual method of failure of beams is by cross-breaking or

transverse rupture. This is caused by the external forces

producing rotation around some point in the section of failure,

Thus, in Fig. 14, let a be the distance between the end and the

load P, and b be the distance between P and the wall. Then

the tendency of Pto cause rotation around a point in the section

at the wall is measured by its moment Pb ; if, however, the
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load were at the end its tendency to produce rotation around

the same point would be measured by the moment P(a -(- b).

'

Bending moment '

is the name given to the algebraic sum
of the moments of the external forces on the left of the sec-

tion with reference to a point in that section. Let it be de-

noted by M. Then, for a cantilever or simple beam,

M= moment of reaction minus sum of moments of loads.

Here the moment of upward forces is taken as positive and

that of downward forces as negative. M may hence be positive

or negative according as the first or second term is the greater.

For a simple beam of length /, uniformly loaded, each reaction

is fywl. For any section distant x from the left support the

moment is M= \wl . x wx . ^x,

x being the lever arm of the re-

action \wl, and \x the lever arm

of the load wx. Here M = o

when x = o and also when x = /,

and M is a maximum when x = /. Fie- s-

The equation, in short, is that of a parabola whose maximum
ordinate is \wl* and whose graphical representation is as given

in Fig. 15, each ordinate showing the value of M for the cor-

responding value of the abscissa x.

Consider next a simple beam loaded with only three weights

P,,Py ,
andP

3
. Here for any section between the left support and

the first load M = Rx, and for any \P
L

ip
2

section between the first and second y
"1 I

loads M = Rx-P, (x-a). Each of

these expressions is the equation of
j Jllllllllllllilllillli^ I

a straight line, x being the abscissa

and Mthe ordinate, and the graphical

representation of bending moments is as shown in Fig. 16. It

is seen that for a simple beam all the bending moments are

positive.

.p

4
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For a cantilever there is no reaction at the left end and all

the bending moments are negative, the tendency to rotation

thus being opposite in direction to that in a simple beam. For

instance, for a cantilever beam uniformly loaded and having a

load at the end the bending moment is M = Px^wx\
Here the variation of moments may be represented by a parab-

ola, M being o at the free end and a maximum at the wall.

For any given case the bending moment at any section may
be found by using the definition given above. The external

forces on the left of the section are taken merely for conven-

ience, for those upon the right have also the same bending
moment with reference to the section. The bending moment

in all cases is a measure of the tendency of the external forces

on either side of the section to turn the beam around a point

in that section.

The bending moment is a compound quantity resulting from

the multiplication of a force by a distance. Usually the forces

are expressed in pounds and the distances in feet or inches ;

then the bending moments are pound-feet or pound-inches.

Thus if a load of 500 pounds be at the middle of a simple
beam of 8 feet span, the bending moment under the load is,

M = 250 X 4 = i ooo pound-feet = 12 ooo pound-inches.

Again let a simple beam of 8 feet span be uniformly loaded

with 500 pounds and have a weight of 200 pounds at the mid-

dle. Then the bending moment at the middle is,

M =350 X 4250 X 2 = 900 pound-feet.

Hence the tendency to rupture is less in the second case than

in the first.

Prob. 31. A beam 6 feet long and weighing 20 pounds per
foot is placed upon a single support at its middle. Compute the

bending moments for sections distant I, 2, 3, 4, and 5 feet from
the left end, and draw a curve to show the distribution of mo-
ments throughout the beam.
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Prob. 32. A simple beam of 6 feet span weighs 20 pounds

per linear foot and has a load of 270 pounds at 2 feet from the

left end. Find the vertical shears for sections one foot apart

throughout the beam, and draw the diagram of shears. Find

the bending moments for the same sections and draw the dia-

gram to represent them.

ART. 19. INTERNAL STRESSES AND EXTERNAL FORCES.

The external loads and reactions on a beam maintain their

equilibrium by means of internal stresses which are generated
in it. It is required to determine the relations between the ex-

ternal forces and the internal stresses
; or, since the effect of

the external forces upon any section is represented by the ver-

tical shear (Art. 17) and by the bending moment (Art. 18), the

problem is to find the relation between these quantities and the

internal stresses in that section.

Consider a beam of any kind which is loaded in any manner.

Imagine a vertical plane mn cutting the beam at any cross-sec-

tion. In that section there are act- i

|

ing unknown stresses of various in-

tensities and directions. Let the

beam be imagined to be separated

into two parts by the cutting plane

and let forces X, Y, Z, etc., equiv-

alent to the internal stresses, be

applied to the section as shown in
'

|

Fig. 17. Then the equilibrium of ' x >j

m '

each part of the beam will be undis- y^i*<

turbed, for each part will be acted z-*
:

upon by a system of forces in equi-

librium. Hence the following fun- Fig . I7 .

damental principle is established.

The internal stresses in any cross-section of a beam hold in

equilibrium the external forces on each side of that section.

1 1
!"

I I m\ : ^

r i u

f
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This is the most important principle in the theory of flexure.

It applies to all beams, whether the cross-section be uniform or

variable and whatever be the number of the spans or the na-

ture of the loading.

Thus in the above figure the internal stresses X, Y, Z, etc.,

hold in equilibrium the loads and reactions on the left of the

section, and also those on the right. Considering one part only

a system of forces in equilibrium is seen, to which the three

necessary and sufficient conditions of statics apply, namely,

2 of all horizontal components = o,

2 of all vertical components = o,

2 of moments of all forces = o.

From these conditions can be deduced three laws concerning
the unknown stresses in any section. Whatever be the inten-

sity and direction of these stresses, let each be resolved into

its horizontal and vertical components. The horizontal com-

ponents will be applied at different points in the cross-section,

FJ || some acting in one direc-

* J * i tion and some in the other,

or in other words, some of

the horizontal stresses are

tensile and some compres-
Fi - l8 - sive : by the first condition

the algebraic sum of these is zero. The vertical components
will add together and form a resultant vertical force V which,

by the second condition, equals the algebraic sum of the exter-

nal forces on the left of the section. As this internal force

Facts in contrary directions upon the two parts into which the

beam is supposed to be separated, it is of the nature of a shear.

Hence for any section of any beam the following laws concern-

ing the internal stresses may be stated.

1st. The algebraic sum of the horizontal stresses is zero
;
or

the sum of the horizontal tensile stresses is equal to the

sum of the horizontal compressive stresses.
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2nd. The algebraic sum of the vertical stresses forms a re-

sultant shear which is equal to the algebraic sum of the

external vertical forces on either side of the section.

3rd. The algebraic sum of the moments of the internal

stresses is equal to the algebraic sum of the moments of

the external forces on either side of the section.

These three theoretical laws are the foundation of the theory

of the flexure of beams. Their expression may be abbreviated

by introducing the following definitions.

'

Resisting shear
f

is the name given to the algebraic sum of

the internal vertical stresses in any section, and ' vertical shear
'

is the name for the algebraic sum of the external vertical forces

on the left of the section.
'

Resisting moment '

is the name

given to the algebraic sum of the moments of the internal hori-

zontal stresses with reference to a point in the section, and

'bending moment' is the name for the algebraic sum of the

moments of the external forces on either side of the section

with reference to the same point. Then the three laws may
be thus expressed for any section of any beam,

Sum of tensile stresses = Sum of compressive stresses.

Resisting shear = Vertical shear.

Resisting moment = Bending moment.

The second and third of these equations furnish the funda-

mental laws for investigating beams. They state the relations

between the internal stresses in any section and the external

forces on either side of that section. For the sake of uniform-

ity the external forces on the left hand side of the section will

generally be used, as was done in Arts. 17 and 18.

Prob. 33 A wooden beam 12 x 14 inches and 6 feet long is

sustained at one end by a force of 280 pounds acting at an

angle of 60 degrees with the vertical, and at the other end by a

vertical force Y and a horizontal force X, Find the values of

X and Y.
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ART. 20. EXPERIMENTAL AND THEORETICAL LAWS.

From the three necessary conditions of static equilibrium, as

stated in Art. 19, three important theoretical laws regarding

internal stresses were deduced. These alone, however, are not

sufficient for the full investigation of the subject, but recourse

must be had to experience and experiment. Experience teaches

that when a beam deflects one side becomes concave and the

other convex, and it is reasonable to suppose that the hori-

zontal tensile stresses are on the convex side and the compres-

sive stresses on the concave. By experiments on beams this is

confirmed and the following laws deduced.

(F) The horizontal fibers on the convex side are elongated
and those on the concave are shortened, while near the

center is a ' neutral surface
'

which is unchanged in length.

(G) The amount of elongation or compression of any fiber

is directly proportional to its distance from the neutral

surface. Hence by law (B] the horizontal stresses are

also directly proportional to their distances from the

neutral surface, provided the elastic limit of the material

be not exceeded.

From these laws there will now be deduced the following im-

portant theorem regarding the position of the neutral surface :

The neutral surface passes through the centers of gravity
of the cross-sections.

To prove this let a be the area of any elementary fiber and z its

distance from the neutral surface. Let S be the unit-stress

on the fiber most remote from the neutral surface at the

distance c. Then by law (G),

= unit-stress at the distance unity,

z unit-stress at the distance z,
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therefore az = the total stress on any fiber of area a,

and 2 = algebraic sum of all horizontal stresses.

But by the first law of Art. 19 this algebraic sum is zero, and

since 5 and c are constants the quantity 2az is also zero. This,

however, is the condition which makes the line of reference

pass through the center of gravity as is plain from the defini-

tion of the term ' center of gravity.' Therefore, the neutral

surface of beams passes through

the centers of gravity of the

cross-sections.
____._.._ _ Neutral Surface

The 'neutral axis' of a cross-

section is the line in which the

neutral surface intersects the Flg ' I9'

plane of the cross-section. On the left of Fig. 19 is shown the

neutral axis of a cross-section and on the right a trace of the

neutral surface.

Prob. 34. A beam 3 inches wide and 6 inches deep is loaded

so that the unit-stress at the remotest fiber of a. certain cross-

section is 600 pounds per square inch. Find the sum of all the

tensile stresses on the cross-section.

Prob. 35. A wooden beam 6 x 12 inches and five feet long is

supported at one end and kept level by two horizontal forces

X and Z acting at the other end in the median line of the cross-

section, the former at 2 inches from the top and the latter at 2

inches from the base. Find the values of X and Z.

ART. 21. THE Two FUNDAMENTAL FORMULAS.

Consider again any beam loaded in any manner and cut at

any section by a vertical plane. The internal stresses in that

section hold in equilibrium the external forces on the left of
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the section, and as shown in Art. 19, the following fundamental

laws obtain,

Resisting shear = Vertical shear,

Resisting moment = Bending moment.

The principles established in the preceding pages can now be

applied to the algebraic expression of these four quantities.

The resisting shear is the algebraic sum of all the vertical

components of the internal stresses at any section of the beam.

If A be the area of that section and Ss the shearing unit-stress,

regarded as uniform over the area, then from formula (i),

Resisting shear = ASS .

The vertical shear for the same section of the beam being V
(Art. 17), the first of the above fundamental laws becomes,

(3) AS. = V,

which is the first fundamental formula for the discussion of

beams.

The resisting moment is the algebraic sum of the moments
of the internal horizontal stresses at any section with reference

to a point in that section. To find an expression for its value

let S be the horizontal unit-stress, tensile or compressive as the

case may be, upon the fiber most remote from the neutral axis

and let c be the shortest distance from that fiber to said axis.

Also let z be the distance from the neutral axis to any fiber

having the elementary area a. Then by law (G] and Fig. 19,

= unit-stress at a distance unity,

z = unit-stress at distance 2,

= total stress on any fiber of area a,
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and = moment of this stress about neutral axis.
c

2 = resisting moment of horizontal stresses.

Since 5 and c are constants this expression may be written

-'Saz*. But 2az*, being the sum of the products formed by

multiplying each elementary area by the square of its distance

from the neutral axis, is the moment of inertia of the cross-

section with reference to that axis and may be denoted by /.

Therefore,

Resisting moment =

The bending moment for the same section of the beam being

M (Art. 1 8), the second of the above fundamental laws becomes,

(4) ^ =W
which is the second fundamental formula for the discussion of

beams.

Experience and experiment teach that simple beams of uni-

form section break near the middle by the tearing or crushing

of the fibers and very rarely at the supports by shearing.

Hence it is formula (4) that is mainly needed in the practical

investigation of beams. The following example and problem
relate to formula (3) only, while formula (4) will receive detailed

discussion in the subsequent articles.

As an example, consider a wrought iron I beam 15 feet long
and weighing 200 pounds per yard, over which roll two locomo-

tive wheels 6 feet apart and each bearing 12 ooo pounds. The
maximum vertical shear at the left support will evidently occur

when one wheel is at the support (Art. 16). The reaction will

then be 500 -[- 12 ooo + TV X 12 ooo = 19 700 pounds. Ac-

cordingJy the greatest value of V in the beam is 19 700
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pounds. As the area of the cross-section is 20 square inches

the average shearing unit-stress by formula (3) is 985 pounds,

so that the factor of safety is about 50.

Prob. 36. A wooden beam 6X9 inches and 12 feet in span
carries a uniform load of 20 pounds per foot besides its own

weight and also two wheels 6 feet apart, one weighing 4 ooo

pounds and the other 3 ooo pounds. Find the factor of safety

against shearing.

ART. 22. CENTER OF GRAVITY OF CROSS-SECTIONS.

The fundamental formula (4) contains c, the shortest dis-

tance from the remotest part of the cross-section to a hori-

zontal axis passing through the center of gravity of that cross-

section. The methods of finding c are explained in books on

theoretical mechanics and will not here be repeated. Its val-

ues for some of the simplest cases are however recorded for

reference.

For a rectangle whose height is d, c = %d.

For a circle whose diameter is d, c = \d.

For a triangle whose altitude is d, c = \d.

For a square with side d having one diagonal

vertical, c =
For a I whose depth is d, c =
For a _L whose depth is d, thickness of flange ty

width of flange b, and thickness of web t',

t'd + t(b t'}

For a trapezoid whose depth is d, upper base b,

b+ 2b' d
and lower base b . c = -

3

The student should be prepared to readily apply the principle
of moments to the deduction of the numerical value of c for

any given cross-section. In nearly all cases the given area

may be divided into rectangles, triangles, and circular areas,
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whose centers of gravity are known, so that the statement of

the equation for finding c is very simple.

Prob. 37. Find the value of c for a rail headed beam whose
section is made up of a rectangular flange f X 4 inches, a rect-

angular web 2- X 5 inches, and an elliptical head inches deep
and \\ inches wide.

ART. 23. MOMENT OF INERTIA OF CROSS-SECTIONS.

The fundamental formula (4) contains /, the moment of in-

ertia of the cross-section of the beam with reference to a hori-

zontal axis passing through the center of gravity of that cross-

section. Methods of determining / are explained in works on

elementary mechanics and will not here be repeated, but the

values of some of the most important cases are recorded for

reference.
7 73

For a rectangle of base b and depth d, I =

For a circle of diameter d, I = -r-
64

For an ellipse with axes a and b, the latter

nab*
vertical, /=-

64

For a triangle of base b and depth d, 1=
For a square with side d, having one diag-

onal vertical, 7= -

12

For a I with base b, depth d, thickness of

flanges t and thickness of web t',

bd* (b t'}(d

'

2t)>

12

For a J_ with base d, depth d, thickness

of flange /, thickness of web t' and

bd*-(b-t'}(d-tfarea A, I - " J, _ ^c\
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The value of / for any given section may always be computed

by dividing the figure into parts whose moments of inertia are

known and transferring these to the neutral axis by means of

the familiar rule /, = /-(- AJf, where 7 is the primitive value

for an axis through the center of gravity, I
I
the value for any

parallel axis, A the area of the figure and h the distance be-

tween the two axes.

Prob. 38. Compute the least moment of inertia of a trape-

zoid whose altitude is 3 inches, upper base 2 inches, and lower

base 5 inches.

Prob. 39. Find the moment of inertia of a triangle with ref-

erence to its base, and also with reference to a parallel axis

passing through its vertex.

ART. 24. THE MAXIMUM BENDING MOMENT.

The fundamental equation (4), namely = M, is, true for

any section of any beam, / being the moment of inertia of that

section about its neutral axis, c the vertical distance from that

axis to the remotest fiber, S the tensile or compressive unit-

stress on that fiber, and M the bending moment of all the ex-

ternal forces on one side of the section. For a beam of con-

stant cross-section 5 varies directly as M, and the greatest 5
will be found where M is a maximum. The place where M
has its maximum value may hence be called the '

dangerous

section,' it being the section where the horizontal fibers are

most highly strained.

For a simple beam uniformly loaded with w pounds per
linear unit, the dangerous section is evidently at the middle,

W?
and, as shown in Art. 18, the maximum Mis --5--o

For a simple beam loaded with a single weight P at the dis-

tance/ from the left support, the left reaction is R = P y-^,



\
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and the maximum moment is -, . If Pbe movable the

distance/ will be variable, and when the load is at the middle

the maximum M is \Pl.

For a beam loaded with given weights, either uniform or

concentrated, it may be shown that the dangerous section is at

the point where the vertical shear passes through zero. To

prove this let P
1
be any concentrated load on the left of the

section and / its distance from the left support, and w the uni-

form load per linear unit. Then, for any section distant x
from the left support,

M~R.x-wx.Z- 2P,(x -/).

To find the value of x which renders this a maximum, the first

derivative must be put equal to zero ; thus,

^= *,-*-;*/>= a
dx

But R^ wx 2P
l
is the vertical shear V for the section x

(see Art. 17). Therefore the maximum moment occurs at the

section where the vertical shear passes through zero.

To find the dangerous section for any given case the reac-

tions are first to be computed by Art. 16, and then the verti-

cal shears are to be investigated by Art. 17. For a cantilever,

however it be loaded, it is seen that the vertical shear becomes

zero at the wall. For a simple beam with concentrated loads

the point where the vertical shear passes through zero must

usually be ascertained by trial. Thus, referring to Fig. 9 and

the example in Art. 16, the vertical shear just at the left of

the first load is V = 520 3 X 35 = + 4 J 5 pounds, and just

at the right of the first load it is V 520 3 X 35 300 =
+ 115 pounds. Again for the second load the vertical shear

just at the left is V =. 520 5 X35 300 = -f- 45 pounds, and

just at the right \t\sV= 520 5 X 35 360 = -

15 pounds.

Hence in this case the vertical shear changes sign, or passes
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through zero, under the second load, and accordingly this is

the position of the dangerous section.

When the dangerous section has been found the bending

moment for that section is to be computed by the definition

of Art. 1 8, and this will be the maximum bending moment for

the beam. Thus, for the numerical example of the last para-

graph, the maximum bending moment is,

M= 520 X 5 175 X 2j 300 X 2 = + 1562.5 pound-feet.

Again, let a cantilever beam 8 feet long be loaded with 40 pounds

per linear foot and carry a weight of 1 50 pounds at the free end ;

then the maximum bending moment is,

M= 320 X 4 150x8= 2 480 pound-feet.

The bending moment for simple beams is seen to be always

positive and for cantilever beams always negative. That is to

say, in the former case the exterior forces on the left of the

section cause compression in the upper and tension in the lower

fibers of the beam, while in the latter case this is reversed
;
or

the upper side of a deflected simple beam is concave and the

upper side of a deflected cantilever beam is convex.

Prob. 40. A simple beam 12 feet long carries a load of 150

pounds at 5 feet from the left end and a load of 150 pounds at

5 feet from the right end. Find the dangerous section, and the

maximum bending moment.
Prob. 41. A simple beam 12 feet long weighs 20 pounds per

foot and carries a load of 100 pounds at 4 feet from the left end

and a load of 50 pounds at 7 feet from the left end. Find the

dangerous section, and the maximum bending moment.

ART. 25. THE INVESTIGATION OF BEAMS.

The investigation of a beam consists in deducing the greatest

horizontal unit-stress 5 in the beam from the fundamental for-

mula (4). This may be written,
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First, from the given dimensions find, by Art. 22, the value of c

and by Art. 23 the value of /. Then by Art. 24 determine the

value of maximum M. From (4) the value of 5 is now known.

Usually c and / are taken in inches, and M in pound-inches ;

then the value of 5 will be in pounds per square inch.

The value of 5" will be tension or compression according as

the remotest fiber lies on the concave or convex side of the beam.

If S' be the unit-stress on the opposite side of the beam and

c' the distance from the neutral axis, then from law (G),

S S' ce
f

- = r and 5 = S .

c c c

If 6" be tension, S' will be compression, and vice versa. Some-

times it is necessary to compute S' as well as 5 in order to

thoroughly investigate the stability of the beam. By comparing
the values of 5 and S' with the proper working unit-stresses

for the given materials (Art. 8), the degree of security of the

beam may be inferred.

As an example consider a wrought iron I beam whose depth
is 12 inches, width of flange 4.5 inches, thickness of flange I inch

and thickness of web 0.78 inches. It is supported at its ends

forming a span of 12 feet, and carries two loads each weighing
10000 pounds, one being at the middle and the other at one

foot from the right end.

By Art. i, w = $6 pounds per linear foot.

By Art. 16, R = 6169 pounds.

By Art. 22, c = 6 inches.

By Art. 23, /= 338 inches
4

.

By Art. 24, x =. 6 feet for dangerous section.

By Art. 24, max. M= 36006 x 12 pound-inches.

Then from formula (4) the unit-stress at the dangerous section is,

~ 36000 x 12 x 6
5 = = 7 700 pounds per square inch.

33
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This is the compressive unit-stress on the upper fiber and also

the tensile unit-stress on the lower fiber, and being only about

one-third of the elastic limit for wrought iron and about one-

seventh of the ultimate strength it appears that the beam is

entirely safe for steady loads (Art. 8). It will usually be best

in solving problems to insert all the numerical values at first in

the formula and thus obtain the benefit of cancellation.

A short beam heavily loaded should also be investigated for

the shearing stress at the supports in the manner mentioned in

Art. 21, but in ordinary cases there is little danger from this

cause. Thus for the above example the maximum vertical

shear occurs at the right end and is 14 500 pounds ;
as the

area of the cross-section is 16.8 square inches, the mean shear-

ing unit-stress at the right end is from (3),

.S = --^ = 863 pounds per square inch,
IO.8

so that the factor of safety against shearing is nearly 60.

Prob. 42. A piece of scantling 2 inches square and 10 feet

long is hung horizontally by a rope at each end and three

painters stand upon it. Is it safe ?

Prob. 43. A wrought iron bar one inch in diameter, and two

feet long is supported at its middle and a load of 500 pounds

hung upon each end of it. Find its factor of safety.

ART. 26. SAFE LOADS FOR BEAMS.

The proper load for a beam should not make the value of 5
at the dangerous section greater than the allowable unit-stress.

This allowable unit-stress or working strength is to be assumed

according to the circumstances of the case by first selecting a

suitable factor of safety from Art. 8 and dividing the ultimate

strength of the material by it, the least ultimate strength whether

tensile or compressive being taken. For any given beam the

quantities / and c are known. Then, by the general formula (4),
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the bending moment M may be expressed in terms of the un-

known loads on the beam, and thus those loads be found. The

sign of the bending moment should not be used in (4), since

that sign merely denotes whether the upper fiber of the beam

is in tension or compression, or indicates the direction in which

the external forces tend to bend it.

As an example, consider a cantilever beam whose length is

6 feet, breadth 2 inches, depth 3 inches and which is loaded

uniformly with w pounds per linear foot. It is required to find

the value of w so that .S may be 800 pounds per square inch.

Here c = i^ inches, /= ^, and M = 36 x 6zv. Then from

formula (4),

800 X 54
2iozy ; ,

whence w = n pounds.ix 12
'

Since a wooden beam 2X3 inches weighs about 2 pounds per

linear foot, the safe load in this case will be about 9 pounds

per foot.

Prob. 44. A wooden beam 8x9 inches and of 14 feet span
carries a load, including its own weight, of w pounds per linear

foot. Find the value of w for a factor of safety of 10.

Prob. 45. A steel railroad rail of 2 feet span carries a load

P at the middle. If its weight per yard is 56 pounds, /= 12.9

inches
4 and c= 2.16 inches, find P so that the greatest horizon-

tal unit-stress at the dangerous section shall be 6 ooo pounds

per square inch.

ART. 27. DESIGNING OF BEAMS.

When a beam is to be designed the loads to which it is to be

subjected are known, as also is its length. Thus the maximum

bending moment may be found. The allowable working strength

6" is assumed in accordance with engineering practice. Then

formula (4) may be written,

/ M
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and the numerical value of the second member be found. The

dimensions to be chosen for the beam must give a value of-

equal to this numerical value, and these in general are deter-

mined tentatively, certain proportions being first assumed. The

selection of the proper proportions and shapes of beams for

different cases requires much judgment and experience. But

whatever forms be selected they must in each case be such as

to satisfy the above equation.

For instance, a wrought iron beam of 4 feet span is required

to carry a rolling load of 500 pounds. Here, by Art. 24, the

value of maximum M due to the load of 500 pounds is 6 ooo

pound-inches. From Art. 8 the value of 6" for a variable load

is about 10000 pounds per square inch. Then,

/ 6000

10000
= 0.6 inches

3
.

An infinite number of cross-sections may be selected with this

value of -. If the beam is to be round and of diameter d. it
c

is known that c = \d and f= -?. Hence,
04

nd*
=0.6, whence d= 1.83 inches.

If the cross-section is to be rectangular, the dimensions 1x2

inches would give the value of as which would be a little

too large, but it would be well to use it because the weight of

the beam itself has not been considered in the discussion. If

thought necessary these dimensions may now be investigated

by Art. 25 in order to determine how closely the actual unit-

stress agrees with the value assumed. Thus the rectangular

section I x 2 inches weighs 6-f pounds per foot
;
the maximum
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bending moment is then 6 1 60 pound-inches, and the unit-stress

is found to be 9 240 pounds per square inch.

Prob. 46. Design a hollow circular wrought iron beam for a

span of 12 feet to carry a load of 320 pounds per linear foot.

Prob. 47. A rectangular wooden beam of 14 feet span carries

a load of I ooo pounds at its middle. If its width is 4 inches

find its depth for a factor of safety of 10.

ART. 28. THE MODULUS OF RUPTURE.

The fundamental formula (4) is only true for stresses within

the elastic limit, since beyond that limit the law (G) does not

hold, and the horizontal unit-stresses

are no longer proportional to their

distances from the neutral axis, but

increase in a more rapid ratio. The

sketch shows a case where the fiber

stresses above m and below n have Flg- 20-

surpassed the elastic limit. It is however very customary in

practical computations to apply (4) to the rupture of beams.

The ' modulus of rupture
'

is the value of 5 deduced from

formula (4) when the beam is loaded up to the breaking point.

It is always found by experiment that the modulus of rupture

does not agree with either the ultimate tensile or compressive

strength of the material but is intermediate between them. If

formula (4) were valid beyond the elastic limit, the value of .S

for rupture would agree with the least ultimate strength, with

tension in the case of cast iron and with compression in the case

of timber. The modulus of rupture is denoted by Sr .

The average values of the modulus of rupture are given in

the following table, which also contains the average ultimate

tensile and compressive strengths, previously stated in Arts. 5

and 6, all in pounds p.er square inch.
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Material.
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For 2nd, M= and hence W=2-^-.

For 3rd, M and hence W= 4-7-.
4 ic

For 4th, M=-Q- and hence W= 8-v-.
o *

Therefore the comparative strengths of the four cases are as

the numbers I, 2, 4, 8. That is, if four such beams be of equal

size and length and of the same material, the 2nd is twice as

strong as the 1st, the 3rd fourtimes as strong, and the 4th eight

times as strong. From these equations also result the follow-

ing important laws.

The strength of a beam varies directly as S, directly as

/, inversely as c, and inversely as the length /.

A load uniformly distributed produces only one-half as

much stress as the same load when concentrated.

These apply to all cantilever and simple beams whatever be

the shape of the cross-section.

When the cross-section is rectangular, let b be the breadth

and ^the depth, then (Art. 23) the above equations become,

SbcTW= n
~6T>

where n is either I, 2, 4, or 8, as the case may be. Therefore,

The strength of a rectangular beam varies directly as the

breadth and directly as the square of the depth.

The reason why rectangular beams are put with the greatest

dimensions vertical is now apparent.

To find the strongest rectangular beam that can be cut from

a circular log of given diameter D, it is necessary to make bd*

a maximum. Or the value of b is to be found which makes

b (D* ') a maximum. By placing the first derivative equal
to zero this value of b is readily found. Thus,

and d



Fig. 21.
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Hence very nearly, b : d : : 5 : 7. From this it is evident

that the way to lay off the strongest beam on

the end of a circular log is to divide the diameter

into three equal parts, from the points of divi-

sion draw perpendiculars to the circumference,

and then join the points of intersection with the

ends of the diameter, as shown in the figure.

The beam thus cut out is, of course, not as strong as the log,

and the ratio of the strength of the beam to that of the log is

that of their values of -, which will be found to be about 0.65.

Prob. 50. Compare the strength of a rectangular beam 2

inches wide and 4 inches deep with that of a circular beam 3

inches in diameter.

Prob. 51. Compare the strength of a wooden beam 4 X 6

inches and 10 feet span with that of a wrought iron beam 1X2
inches and 7 feet span.

ART. 30. WROUGHT IRON I BEAMS.

Wrought iron I beams are rolled at present in about thirteen

different depths or sizes ; of each there is a light and a heavy
-j-46^.^

..

^gh^ ancj Weights intermediate in value

may also be obtained. They are extensively

used in engineering and architecture. The

following table gives mean sizes, weights,

and moments of inertia of wrought iron

beams most commonly found in the market.

The sizes of different manufacturers agree

} IL^ as to depth, but vary slightly with regard to

I f~~~^ ^^^ proportions of cross-section, weights per foot,

Fig. 33. an(j moments of inertia. Fig. 22 shows the

proportions of the light and heavy 6 inch beams. The cross-

section of any beam in the table is obtained from its weight per
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foot by multiplying by 3 and dividing by 10, in accordance with

the rule of Art. i.

The moments of inertia in the fourth column of the table are

taken about an axis perpendicular to the web at the center,

this being the neutral axis of the cross-section when used as a

beam. The values of /' are with reference to an axis coincid-

ing with the center line of the web and are for use in Chapter V.

Size.

Depth.

Inches.
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In investigating the strength of a given I beam the value of -

is taken from the table and S is computed from formula (4).

In designing an I beam for a given span and loads the value of

- is found by. (4) from the data and then from the table that I

is selected which has the nearest or next highest corresponding
value. Intermediate weights between those given in the table

can also usually be obtained
; thus, if the computed value of -

should be 34.0 a lo-inch beam weighing about 38 pounds per

foot might be chosen.

For example, let it be required to determine which I should

be selected for a floor loaded with 150 pounds per square foot,

the beams to be of 20 feet span and spaced 12 feet apart be-

tween centers, and the maximum unit-stress S to be 12000

pounds per square inch. Here the uniform load on the beam

is 12 X 20 X 150 = 36000 pounds = W. From formula (4),

I_M __36ooo X 20 X 12 _
~c~~'S

~~

8 X 12000

and hence from the table, the light 1 5 inch I should be se-

lected.

Steel I beams and other shapes are now beginning to be used,

and will undoubtedly be very common in a few years.

Prob. 52. A heavy 15 inch I beam of 12 feet span sustains a

uniformly distributed load of 41 net tons. Find its factor of

safety. Also the factor of safety for a 24 feet span under the

same load.

Prob. 53. A floor, which is to sustain a uniform load of 175

pounds per square foot, is to be supported by heavy 10 inch I

beams of 15 feet span. Find their proper distance apart from

center to center so that the maximum fiber stress may be

12000 pounds per square inch.
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Q

ART. 31. WROUGHT IRON DECK BEAMS.

Deck beams are used in the construction of buildings, and

are of a section such as shown in Fig. 23. The heads are

formed with arcs of circles but may be

taken as elliptical in computing the values

of c and /. The following table gives di-

mensions of a few wrought iron sections

found in the market.

By means of formula (4) a given deck

beam may be investigated or safe loads be

determined for it, or one may be selected

for a given load and span. Sometimes T
irons are used instead of deck beams

;
the

values of c and / for these are given in the Flg> 23-

handbooks issued by the manufacturers, or they may be com-

puted with an accuracy usually sufficient by regarding the

web and flange as rectangular (Arts. 22 and 23).

Size. Depth.

Inches.
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ART. 32. CAST IRON BEAMS.

Wrought iron beams are usually made with equal flanges

since the resistance of wrought iron is about the same for both

tension and compression. For cast iron, however, the flange

under tension should be larger than that under compression,

since the tensile resistance of the material is much less than its

compressive resistance. Let S' be the unit-stress on the re-

motest fiber on the tensile side and 5 that on the compressive

side, at the distances c' and c respectively from the neutral axis.

Then, from law (G),

Now if the working values of 5 and S' can be selected the

ratio of c to c' is known and a cross-section can be designed,

but it is difficult to assign these proper values on account of

our lack of knowledge regarding the elastic limits of cast iron.

According to HODGKINSON'S investigations the following

are dimensions for a cast iron beam of equal ultimate strength.

Thickness of web = t,

Depth of beam = 13.5^,

Width of tensile flange = I2t,

Thickness of tensile flange = 2t,

Width of compressive flange = 5/,

Thickness of compressive flange =
i%t,

Value of c =
9/,

Value of / = 923**.

Here the unit-stress in the tensile flange is one-half that in the

compressive flange. Although these proportions may be such

as to allow the simultaneous rupture of the flanges, yet it does

not necessarily follow that they are the best proportions for

ordinary working stresses, since the factors of safety in the

flanges as computed by the use of formula (4) would be quite

different. The proper relative proportions of the flanges of







ART. 32. CAST IRON BEAMS. 69

cast iron beams for safe working stresses have never been

definitely established, and on account of the extensive use of

wrought iron the question is not now so important as formerly.

As an illustration of the application of formula (4) let it be

required to determine the total uniform load W for a cast iron

beam of 14 feet span, so that the factor of safety may be 6,

the depth of the beam being 18 inches, the width of the flange

12 inches, the thickness of the stem I inch, and the thickness

of the flange i inches. First, from Art. 22 the value of c is

found to be 12.63 inches, and that of c' to be 5.37 inches.

From Art. 23 the value of / is computed to be I 031 inches
4

.

From Art. 24 the maximum bending moment is,

M = - = 21 W pound-inches.
o

Now with a factor of safety of 6 the working strength 5 on the

remotest fiber of the stem of the dangerous section is to be

^ pounds per square inch. Hence from formula (4),

2iW = 90 X * 31
, whence W= 58 300 pounds.6 X 12.63

Again with a factor of safety of 6 the working strength S' on

the remotest fiber of the flange at the dangerous section is to be

20000

6
pounds per square inch. Hence from the formula,

2lW = 20 OOP X
103^ whence W= 30 400 pounds.

The total uniform load on the beam should hence not exceed

30 400 pounds. Under this load the factor of safety on the

tensile side is 6, while on the compressive side it is nearly 12.

Prob. 56. A cast iron beam in the form of a channel, or

hollow half rectangle, is often used in buildings. Suppose the

thickness to be uniformly one inch, the base 8 inches, the height
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6 inches and the span 12 feet. Find the values of 5 and S' at

the dangerous section under a uniform load of 5 ooo pounds.

ART. 33. GENERAL EQUATION OF THE ELASTIC CURVE.

When a beam bends under the action of exterior forces the

curve assumed by its neutral surface is called the elastic curve.

It is required to deduce a general expression for its equation.

Let pp in the figure be any normal section in any beam.

Let mn be any short length dl, measured on the neutral surface,

and let qmq be drawn parallel to

the normal section through n.

Previous to the bending the sec-

tions // and tt were parallel ;

now they intersect at o the cen-

ter of curvature. Previous to

the bending pt was equal to dl,

now it has elongated or shortened

the amount pq. The distance

pq will be called A and the dis-

tance mp is the quantity c (Art. 22). The elongation A is pro-

duced by the unit-stress S, and from (2) its value is,

A =

where E is the coefficient of elasticity of the material of the

beam. From the similar figures omn and mpq,

Fig. 24.

om
mn pq

or R_

dl

c

I'

where R is the radius of curvature om.

above value of A, it becomes,

Inserting in this the
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But the fundamental formula (4) may be written in the form

S_M
c~ I'

and hence, by comparison,

This is the formula which gives the relation between the bend-

ing moment of the exterior forces and the radius of curvature

at any section. Where M is o the radius R is oo
; where M is

a maximum R has its least value.

Now, in works on the differential calculus, the following

value is deduced for the radius of curvature of any plane curve

whose abscissa is x, ordinate y, and length /, namely,

dr~
dx . d*y

Hence the most general equation of the elastic curve is,

dr = El
dx . d*y .

M '

which applies to the flexure of all bodies governed by the laws

of Arts. 3 and 20.

In discussing a beam the axis of x is taken as horizontal and

that of y as vertical. Experience teaches us that the length of

a small part of a bent beam does not materially differ from

that of its horizontal projection. Hence dl may be placed

equal to dx for all beams, and the above equation reduces to

the form,

<Ty_
M

dx* El'

This is the general equation of the elastic curve, applicable to

all beams whatever be their shapes, loads or number of spans.

M is the bending moment of the external forces for any sec-
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tion whose abscissa is x, and whose moment of inertia with

respect to the neutral axis is /. Unless otherwise stated / will

be regarded as constant, that is, the cross-section of the beam

is constant throughout its length.

To obtain the particular equation of the elastic curve for any

special case, it is first necessary to express M as a function of

x and then integrate the general equation twice. The ordinate

y will then be known for any value of x. It should, however,

be borne in mind that formula (5), like formula (4), is only true

when the unit-stress 5 is less than the elastic limit of the

material.

Prob. 57. A wooden beam inch wide, f inch deep, and 3

feet span carries a load of 14 pounds at the middle. Find the

radius of curvature for the middle, quarter points, and ends.

ART. 34. DEFLECTION OF CANTILEVER BEAMS.

Case I. A load at the free end. Take the origin of co-ordi-

nates at the free end, and as

in Fig. 25, let m be any point

of the elastic curve whose
Fjg- 2s- abscissa is x and ordinate y.

For this point the bending momentM is Px and the general

formula (5) becomes,

By integration the first derivative is found to be

dy Px*
EI

Tx
= - + c

dv
But

-j-
is the tangent of the angle which the tangent to the

elastic curve at m makes with the axis of x, and as the beam is
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dy
fixed at the wall the value of -j- is o when x equals /. Hence

C = $PI\ and the first differential equation is,

dx~

The second integration now gives,

But y = o, when x = o. Hence C' = o, and

6EIy = P(zl*x
-

x*),

which is the equation of the elastic curve for a cantilever of

length /with a load P at the free end. If x I the value of

y will be the maximum deflection, which may be represented

by A. Then,

and for any point of the beam the deflection is A y.

Case II. A uniform load. Let the origin be taken at the

free end as before, and x and y
be the co-ordinates of any point

of the elastic curve. Let the load ^

per linear unit be w. Then for Fie- 26 -

any section M= fywx* and formula (5) becomes,

^"
dx1

2
'

Integrate this, determine the constant of integration by the

consideration that -=- = o when x = /, and then,dx

-= wr -wx\
dx
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Integrate again, and after determining the constant, the equa-

tion of the elastic curve is,

which is a biquadratic parabola. For x = /, y = A the maxi-

mum deflection, whose value is,

_ u>r _ wrWi~Wr
where W is the total uniform load on the cantilever.

Case III. A load at the free end and also a uniform load.

Here it is easy to show that the maximum deflection is

8

which is the sum of the deflections due to the two loads.

Hence it appears that, as in cases of stress, each load produces

its effect independently of the other.

In order that the formulas for deflection may be true, the

maximum unit-stress S produced by all the loads must not

exceed the elastic limit of the material.

Prob. 58. Compute the deflection of a cast iron cantilever

beam, 2X2 inches and 6 feet span, caused by a load of 100

pounds at the end.

Prob. 59. In order to find the coefficient of elasticity of a

cast iron bar 2 inches wide, 4 inches deep, and 6 feet long, it

was balanced upon a support and a weight of 4000 pounds
hung at each end, causing a deflection of 0.401 inches. Com-

pute the value of E.

ART. 35. DEFLECTION OF SIMPLE BEAMS.

The deflection of a simple beam due to a load at the middle,

or to a uniform load, is readily obtained from the expressions

just deduced for cantilever beams. Thus, for a simple beam

of span /with a load P at the middle, if Fig. 27 be inverted it
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will be seen to be equivalent to two cantilever beams of length

/ with a load \P at each end. The formula for the maximum

deflection of a cantilever beam hence applies to this figure, if

P/ 3

/ be replaced by / and P by \P, which gives A = .-., for the

deflection at the middle of the simple beam. It will be well,

however, to use the general formula (5) and treat each case in-

dependently.

Case I. A single load P at the middle. Let the origin be

taken at the left support. For

any section between the left

support and the middle the

bending moment M is \Px. Fi - 27-

Then the general formula (5) becomes,

d*y _ Px
dx* 2

dy
Integrate this and find the constant by the fact that -j- = o

when x = % . Then integrate again and find the constant by
the fact that y = o when x = o. Thus,

is the equation of elastic curve between the left hand support

and the load. For the greatest deflection make x = /, then,

4= pi'

Case II. A uniform load. Let w be the load per linear unit,

then the formula (5) becomes,

r-.j-d'^y
wlx wx*

~dx*
~

~2~ ~2~'

Integrate this twice, find the constants as in the preceding para-

graph, and the equation of the elastic curve is,

w( x' -f- 2/^
3

l*x},
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from which the maximum deflection is found to be,

$wr 5 wr

Case III. A load P at any point. Here it is necessary first

to consider that there are two elastic curves, one on each side

of the load, which have distinct

5^--
M J ^^ equations, but which have a

\R =̂ss==i ^^ common tangent and ordinate

under the load. As in Fig. 25,

let the load be placed at a distance kl from the left support,

k being a number less than unity. Then the left reaction is

R = P(i k}. From the general formula (5), with the origin

at the left support, the equations are,

On the left of the load,

(a) EI^Z
= Rx,

w f- = $Ks + c
1 ,

On the right of the load,

(a)' EI^ = Rx-P(x- kl\

(bj EI^ = \Rx* - \Px* + Pklx + C
3 ,

(c)
f

Ely = \Rx
3 -

\Px* + ^Pklx
1 + > + C, .

To determine the constants consider in (c) that y = o when

x = o, and hence that Cy
= o. Also in (c)

r

, y = o when x /;

again since the curves have a common tangent under the load,

(fy (b}' when x = kl, and since they have a common ordinate

at that point (c)
=

(c)' when x kl. Or,

o = \Rl*

-f \
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From these three equations the values of 7, ,
Ca ,

and C4
are

found. Then the equation of the elastic curve on the left of

the load is,

P(i
-

k)x*
- P(2k

-
3

To find the maximum deflection, the value of x which renders

y a maximum is to be obtained by equating the first derivative

to zero. If k be greater than
,
this value of x inserted in the

above equation gives the maximum deflection ;
if k be less than

,
the maximum deflection is on the other side of the load.

For instance, if k = f ,
the equation of the elastic curve on the

left of the load is,

This is a maximum when x = O-56/, which is the point of great-

est deflection.

Prob. 60. Prove, when k is greater than |- in Fig. 28, that the
>"

maximum deflection is A =

Prob. 61. In order to find the coefficient of elasticity of

Quercus alba a bar 4 centimeters square and one meter long
was supported at the ends and loaded in the middle with weights
of 50 and 100 kilograms when the deflections were found to be

6.6 and 13.0 millimeters. Show that the mean value of E was

74 500 kilos per square centimeter.

ART. 36. COMPARATIVE DEFLECTION AND STIFFNESS.

From the two preceding articles the following values of the

maximum deflections may now be written and their compari-

son will show the relative stiffness of the different cases.

i wr
For a cantilever loaded at the end with W, A = . .
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i wr
For a cantilever uniformly loaded with W, A -

. -7^.
O L1

i wr
For a simple beam loaded at middle with W, A = .

-
.

40 rLl

c wi*
For a simple beam uniformly loaded with W, 4 =

-|-- . .

354 hi

The relative deflections of these four cases are hence as the

numbers i, |, TV, and T|^.

These equations also show that the deflections vary directly

as the load, directly as the cube of the length, and inversely as

E and /. For a rectangular beam / = --
,
and hence the de-

flection of a rectangular beam is inversely as its breadth and

inversely as the cube of its depth.

The stiffness of a beam is indicated by the load that it can

carry with a given deflection. From the above it is seen that

the value of the load is,

,

where m has the value 3, 8, 48, or -^U- as the case may be.

Therefore, the stiffness of a beam varies directly as E, directly

as /, and inversely as the cube of its length, and the relative

stiffness of the above four cases is as the numbers i, 2$, 16,

and 25f . From this it appears that the laws of stiffness are

very different from those of strength. (Art. 29.)

Prob. 62. Compare the strength and stiffness of a joist 3X8
inches when laid with flat side vertical and when laid with nar-

row side vertical.

Prob. 63. Find the thickness of a white pine plank of 8 feet

span required not to bend more than ^g-jj-th of its length under

a head of water of 20 feet.
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ART. 37. RELATION BETWEEN DEFLECTION AND STRESS.

Let the four cases discussed in Arts. 29 and 36 be again con-

sidered. For the strength,

W= n
,

where n = i, 2, 4, or 8.

For the stiffness,

EIAW= m
,

where m = 3, 8, 48, or 76^.

By equating these values of W the relation between A and

is obtained, thus,

mEcA
or A = nTS

mcE
'

These equations, like the general formula (4) and (5), are only

valid when 5 is less than the elastic limit of the materials.

This also shows that the maximum deflection A varies as

P- for beams of the same material under the same unit-stress 5.
c

From the preceding articles the following table may also be

compiled which exhibits the most important results relating to

both absolute and relative strength and stiffness.

Case.
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Here the signs of the maximum shears and moments are

omitted as only their absolute values are needed in computa-
tions. Evidently the moments are negative for the first and

second cases, and positive for the third and fourth, the direc-

tion of the curvature being different.

Prob. 64. Find the deflection of a wrought iron I heavy 10

inch beam of 9 feet span when strained by a uniform load up
to the elastic limit.

Prob. 65. A wooden beam of breadth b, depth d, and span x

is loaded with P at the middle. Find the value of x so that

rupture may occur under the load. Find also the value of x
so that rupture may occur by shearing at the supports.

ART. 38. CANTILEVER BEAMS OF UNIFORM STRENGTH.

All cases thus far discussed have been of constant cross-

section throughout their entire length. But in the general

formula (4) the unit-stress 5 is proportional to the bending mo-

ment M, and hence varies throughout the beam in the same

way as the moments vary. Hence some parts of the beam are

but slightly strained in comparison with the dangerous section.

A beam of uniform strength is one so shaped that the unit-

stress 5 is the same in all fibers at the upper and lower surfaces.

Hence to ascertain the form of such a beam the unit-stress 5

in (4) must be taken as constant and be made to vary with

M. The discussion will be given only for the most important

practical cases, namely, those where the sections are rectangular.

For these - equals ,
and formula (4) becomes,

'

In this bd* must vary with M for forms of uniform strength.
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For a cantilever beam with a load P at the end, M
and the equation becomes ^Sbd* = Px, in which P and

constant. If the breadth be taken as con-

stant, d* varies with x and the profile is

that of a parabola whose vertex is at the

load, as shown in Fig. 29. The equation of

the parabola is d* = x from which d may
kj O

Px
are

be found for given values of x. The walk- Fig - 29>

ing beam of an engine is often made approximately of this

shape. If the depth of the cantilever beam

be constant then b varies directly as x and

hence the plan should be a triangle as shown

in Fig. 30. The value of b for given values

of P, S, d, and x may be found from the

6Px
expression b = -^ Fig . 30 .

For a cantilever beam uniformly loaded with w per linear

unit M = ^wx
y

,
and the equation becomes ^Sbd* =

in which w and S are known. If the
* -or >

breadth be taken as constant then d varies

as x and the elevation is a triangle, as

in Fig. 31, whose depth at any point is

If however the depth be

Fig. 31.

taken constant, then b =
-|

- x* which is the equation of a

parabola whose vertex is at the free end of the cantilever and

whose axis is perpendicular to it. Or the equation may be

satisfied by two parabolas drawn upon opposite sides of the

center line as shown in Fig. 32.

The vertical shear modifies in practice the shape of these

forms near their ends. For instance, a cantilever beam loaded
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at the end with P requires a cross-section at the end equal to

p
-^-

where Sc is the working shearing strength. This cross-

section must be preserved until a value of

x is reached, where the same value of the

cross-section is found from the moment.

The deflection of a cantilever beam of

uniform strength is evidently greater than

that of one of constant cross-section, since

the unit-stress 5 is greater throughout. In

any case it may be determined from the general formula

(5) by substituting for M and / their values in terms of ^in-

tegrating twice, determining the constants, and then making
x equal to / for the maximum value of y.

For a cantilever beam loaded at the end and of constant

breadth, as in Fig. 29, formula (5) becomes,

J

*y _ i2/!f _ 2 / S*b

lx* EM* E*y 6Px'

Integrating this twice and determining the constants, as in

Art. 34, the equation of the elastic curve is found to be,

In this make x = /, and substitute for 5 its value 7-75 ,
where

ba
l

d^ is the depth of the wall. Then,

Ebd?
'

which is double that of a cantilever beam of uniform depth d.

For a cantilever beam loaded at the end and of constant

depth, formula (5) becomes,

2S
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By integrating this twice and determining the constants as

before, the equation of the elastic curve is found, from which

the deflection is, f\pp

which is fifty per cent greater than for one of uniform section.

Prob. 66. A cast iron cantilever beam of uniform strength is

to be 4 feet long, 3 inches in breadth and to carry a load of

15 ooo pounds at the end. Find the proper depths for every
foot in length, using 3 ooo pounds per square inch for the hori-

zontal unit-stress, and 4000 pounds per square inch for the

shearing unit-stress.

ART. 39. SIMPLE BEAMS OF UNIFORM STRENGTH.

In the same manner it is easy to deduce the forms of uni-

form strength for simple beams of rectangular cross-section.

For a load at the middle and breadth constant, M = \Px,

\P
and hence, Sbd* = %Px. Hence d* = ^ *, from which values

OP

of d may be found for assumed values of x. Here the profile

of the beam will be parabolic, the vertex being at the support,

and the maximum depth under the load.

For a load at the middle and depth constant, M = \Px as

^P
before. Hence b =

-jr^*,
and the plan must be triangular or

lozenge shaped, the width uniformly increasing from the sup-

port to the load.

For a uniform load and constant breadth, M= %wlx

and hence, d*= ^ (Ix x*), and the profile of the beam must

be elliptical, or preferably a half-ellipse.
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3Z/
For a uniform load and constant depth, b =

-|
(Ix x*) and

hence the plan should be formed of two parabolas having their

vertices at the middle of the span.

The figures for these four cases are purposely omitted, in

order that the student may draw them for himself
;

if any dif-

ficulty be found in doing this let numerical values be assigned

to the constant quantities in each equation, and the variable

breadth or depth be computed for different values of x.

In the same manner as in the last article, it can be shown

that the deflection of a simple beam of uniform strength loaded

at the middle is double that of one of constant cross-section if

the breadth is constant, and is one and one-half times as much
if the depth is constant.

Prob. 67. Draw the profile for a cast iron beam of uniform

strength, the span being 8 feet, breadth 3 inches, load at the

middle 30,000 pounds, using the same working unit-stresses as

in Prob. 66.

Prob. 68. Find the deflection of a steel spring of constant

depth and uniform strength which is 6 inches wide at the mid-

dle, 52 inches long, and loaded at the middle with 600 pounds,
the depth being such that the maximum fiber stress is 20 ooo

pounds per square inch.
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CHAPTER IV.

RESTRAINED BEAMS AND CONTINUOUS BEAMS.

ART. 40. BEAMS OVERHANGING ONE SUPPORT.

A cantilever beam has its upper fibers in tension and the

lower in compression, while a simple beam has its upper fibers

in compression and the lower in tension. Evidently a beam

overhanging one support,

as in Fig. 31, has its over-

hanging part in the con-

dition of a cantilever,

and the part near the

other end in the condi-

tion of a simple beam.

Hence there must be a

point / where the stresses

change from tension to

compression, and where

the curvature changes Fig. 33.

from positive to negative. This point / is called the inflection

point ; it is the point where the bending moment is zero. An

overhanging beam is said to be subject to a restraint at the

support beyond which the beam projects, or, in other words,

there is a stress in the horizontal fibers over that support.

Since the beam has but two supports, its reactions may be

found by using the principle of moments as in Art. 16. Thus,

if the distance between the supports be /, the length of the
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overhanging part be m, and the uniform load per linear foot be

w, the two reactions are,

wl wn? wl . . wirf

whose sum is equal to the total load wl -\-wrn. Here, as in

all cases of uniform load, the lever arms are taken to the cen-

ters of gravity of the portions considered.

When the reactions have been found, the vertical shear at

any section can be computed by Art. 17, and the bending mo-

ment by Art. 18, bearing in mind that for a section beyond the

right support the reaction R^ must be considered as a force

acting upward. Thus, for any section distant x from the left

support,

When x is less than /, When x is greater than /,

t
- wx,

The curves corresponding to these equations are shown on

Fig. 33. The shear curve consists bf two straight lines; V= R,
r>

when x = o, and V = o when x =. -
; at the right support

V =R
l

wl from the first equation, and V= R
l -\- Ry

wl

from the second ; V o when x = l-\- m. The moment curve

consists of two parts of parabolas ; M= o when x = o, M is a

p
maximum when x =

-, M = o at the inflection point where
w

x =-i, M has its negative maximum when x = /, and M=ow
when x I -\- m. The diagrams show clearly the distribution

of shears and moments throughout the beam.

For example, if /= 20 feet, m = 10 feet, and w = 40 pounds

per linear foot, the reactions are R^ 30x3 and R^ = 900 pounds.
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Then the point of zero shear or maximum moment is at

x = 7.5 feet, the inflection point at x 15 feet, the maximum
shears are -j- 300, 500, and -f- 400 pounds, and the maximum

bending moments are -f- II2 5 and 2 ooo pound-feet. Here

the negative bending moment at the right support is numeri-

cally greater than the maximum positive moment. The rela-

tive values of the two maximum moments depend on the ratio

of m to /; if m = o there is no overhanging part and the beam

is a simple one
;

if m = \l the case is that just discussed ; if

m = I the reaction R^ is zero, and each part is a cantilever beam.

After having thus found the maximum values of Fand M
the beam may be investigated by the application of formulas

(3) and (4) in the same manner as a cantilever or simple beam.

By'the use of formula (5) the equation of the elastic curve be-

tween the two supports is found to be,

From this the maximum deflection for any particular case may
dy

be determined by putting
-~

equal to zero, solving for x, and

then finding the corresponding value of y.

If concentrated loads be placed at given positions on the

beam the reactions are found by the principle of moments, and

then the entire investigation can be made by the methods above

described.

Prob. 69. Three men carry a stick of timber, one taking hold

at one end and the other two at a common point. Where
should this point be so that each may bear one third the

weight ? Draw the diagrams of shears and moments.

Prob. 70. A light 1 2-inch I beam 25 feet long is used as a

floor beam in a bridge with one sidewalk, the distance between

the supports being 20 feet. Find its factor of safety when the

whole beam is loaded with I 200 pounds per linear foot, and

also when only the 20 feet roadway is loaded.
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ART. 41. BEAMS FIXED AT ONE END AND SUPPORTED AT

THE OTHER.

A beam is said to be fixed at the end when it is so restrained

in a wall that the tangent to the elastic curve at the wall is

horizontal. Thus, in Fig. 33, if the part m is of such a length

that the tangent over the right sup-
*--

i i \ port is horizontal, the part / is in the

same condition as a beam fixed at

one end and supported at the other.

Fig. 34 shows the practical arrange-

ment of such a beam, the left sup-
Flgg 34-

port being upon the same level as

the lower side of the beam at the wall. The reactions of such

a beam cannot be determined by the principles of statics alone,

but the assistance of the equation of the elastic curve must be

invoked.

Case I. For a uniform load over the whole beam, as in Fig.

34, let R be the reaction at the left end. Then for any section

the bending moment is Rx $wx*. Hence the differential

equation of the elastic curve is,

Integrate this once and determine the constant from the neces-

sary condition that = o when x = I. Integrate again and

find the constant from the fact that y = o when x o. Then,

Here also 7=0 when x = /, and therefore R = %wl.

The moment at any point now isM= \wlx favjf, and by

placing this equal to zero it is seen that the point of inflection

isat^r = |/. By the method of Art. 24 it is found that the
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maximum moments are -{-^-fy-gwl* and -Jw/
2

,
and that the

distribution of moments is as represented in Fig. 34.

The point of maximum deflection is found by placing

equal to zero and solving for x. Thus %x* glx* -f- /
3 = o,

one root of which is x = -\-o.^2i^l, and this inserted in the

value of y gives,
wt s

A 0.0054^r,

for the value of the maximum deflection.

Case II. For a load at the middle it is first necessary to con-

sider that there are two elastic curves having a common ordi-

nate and a common tangent under the load, since the expres-

sions for the moment are different on opposite sides of the

load. Thus, taking the origin as usual at the supported end,

On the left of the load,

(a) &=*,
(b) EI = IRS

(c) fy=$Xx
3

On the right of the load the similar equations are,

=

(c)
f

Ely = %Rx*

To determine the constants consider in
(c) that y o when

x = o and hence that C3
= o. In (b)

1

the tangent ^L = o when

x I and hence C
t
= Rl. Since the curves have a common
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tangent under the load (b)
=

(b)' for x =%l, and thus the value

of C
l

is found. Since the curves have a common ordinate

under the load (c)
=

(c)'
when x = /, and thus Ct

is found.

Then,
Rx* Prx Rl*x

(c} Ety= +--,
RX* PX* pix* Rrx pr

From the second of these the value of the reaction is R =

The moment on the left of the load is now M = --$Px, and

that on the right M = \%Px -\- %PL The maximum posi-

tive moment obtains at the load and its value is -%Pl. The

maximum negative moment occurs at the wall, and its value is

-faPl. The inflection point is at x = -fal. The deflection un-

der the load is readily found from (c) by making x = /. The

maximum deflection occurs at a less value of x, which may be

found by equating the first derivative to zero.

Case III. For a load at any point whose distance from the

left support is kl, the following results may be deduced by a

method exactly similar to that of the last case.

Reaction at supported end = %P(2
Reaction at fixed end = \P(lk
Maximum positive moment = \Plk(2.

Maximum negative moment = %Pl(k k*).

The absolute maximum deflection occurs under the load when

Prob. 71. Draw the diagrams of -shears and moments for

a load at the middle, taking P= 600 pounds and /= 12 feet.

Prob. 72. Find the position of load Pwhich gives the maxi-

mum positive moment. Find also the position which gives the

maximum negative moment.







ART. 42. BEAMS OVERHANGING BOTH SUPPORTS. 9!

ART. 42. BEAMS OVERHANGING BOTH SUPPORTS.

When a beam overhangs both supports the bending moments

for sections beyond the supports are negative, and in general

between the supports there will be two inflection points. If

the lengths m and n be

equal the reactions will be

equal under uniform load,

each being one half of the

total load. In any case,

whatever be the nature of

the load,J:he reactions may Flg> 35 '

be found by the principle of moments (Art. 16), and then the

vertical shears and bending moments may be deduced for all

sections, after which the formulas (3) and (4) can be used for

any special problem.

Under a uniformly distributed load, and m = n, which is the

most important practical case, each reaction is wm -(- \wl, the

maximum shears at the supports are wm and fw/, the maxi-

mum moment at the middle is -}- w(/
2

fytf), the maximum
moment at each support is Igivn?, and the inflection points

are distant \ VT 4* from the middle of the beam. Fig. 35

shows the distribution of moments for this case. If m = o, the

beam is a simple one ;
if / = o, it consists of two cantilever

beams.

Prob. 73. If m = n in Fig. 35, find the ratio of / to m in

order that the maximum positive moment may numerically

equal the maximum negative moment.

Prob. 74. A bridge with two sidewalks has a wooden floor

beam 14 X 15 inches and 30 feet long, the distance between

supports being 20 feet and each sidewalk 5 feet. Find its

factor of safety under a uniformly distributed load of 29 ooo

pounds.



92 RESTRAINED AND CONTINUOUS BEAMS. CH. IV.

ART. 43. BEAMS FIXED AT BOTH ENDS.

If, in Fig. 35, the distances m and n be such that the elastic

curve over the supports is horizontal the central span / is

said to be a beam fixed at both ends. The lengths m and n

which will cause the curve to be horizontal at the support can

be determined by the help of the elastic curve. For uniform

load n = m and the bending moment at any section in the

span / distant x from the left support is,

M = (wm + \wl~]x
- %w(m + x)\

which reduces to the simpler form,

in which M' represents the unknown bending moment
at the left support.

Again, for a single load P at the middle of /in Fig. 35 the

elastic curve can be regarded as kept horizontal at the left sup-

port by a load Q at the end of the distance m. Then the bend-

ing moment at any section distant x from the left support, and

between that support and the middle, is,

which reduces to,

M=M'+ lPxt

in which M' denotes the unknown moment Qm at the left

support. The problem of finding the bending moment at any
section hence reduces to that of determining M' the moment

at the support.

Case I. For a uniform load the general equation of the elastic

curve now is,
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Integrating this twice, making -^-
= o when x = o and also

when x = /, the value of M' ,

is found to be ---
,
and

12

the linear equation of the

elastic curve is,

From this the maximum deflection is found to be,

The inflection points are located by making M o, which

gives x = ^/ I A / . The maximum positive moment is at

the middle and its value is
; accordingly the horizontal

24

stress upon the fibers at the middle of the beam is one half

that at the ends. The vertical shear at the left end is %wl, at

the middle o, and at the right end \wl.

Case II. For a load at the middle the general equation of

the elastic curve between the left end and the load is,

and in a similar manner to that

of the last case it is easy to find

that the maximum negative mo- ^s- 37.

ments are ^Pl, that the maximum positive moment is -J-/Y, that

the inflection points are half-way between the supports and the

pr
load, and that the maximum deflection is =^r

Case III. For a load P at a distance kl at the left end let
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M' and V denote the unknown bending moment and vertical

shear at that end. Then on the left of the load,

M=M'+ V'x,

and on the right of the load

M = M 1 + V'x P(x - kl\

By inserting these in the general formula (5), integrating each

twice and establishing sufficient conditions to determine the

unknown M' and V and also the constants of integration, the

following results may be deduced,

Shear at left end = P(\
-

3/P -f 2/P),

Shear at right end = Pk\^ 2k).

Moment at left end = Plk(\ 2k-}- &*),

Moment at right end = Plk\\ k\

Moment under load = -f Plk\2 ^k -f 2/P).

If k \ the load is at the middle and these results reduce to

the values found in Case II.

Prob. 75. Show from the results above given for Case III

that the inflection points are at the distances-- and
I 2k

from the left end.
3-2*
Prob. 76. What wrought iron I beam is required for a span

of 24 feet to support a uniform load of 40000 pounds, the ends

being merely supported? What one is needed when the ends

are fixed ?

ART. 44. COMPARISON OF RESTRAINED AND SIMPLE BEAMS.

As the maximum moments for restrained beams are less

than for simple beams their strength is relatively greater. This

was to be expected, since the restraint produces a negative

bending moment and lessens the deflection which would other-
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wise occur. The comparative strength and stiffness of canti-

levers and simple beams is given in Art. 37. To these may
now be added four cases from Arts. 41 and 43, and the follow-

ing table be formed, in which W represents the total load,

whether uniform or concentrated.

Beams of Uniform Cross-section.
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ART. 45. GENERAL PRINCIPLES OF CONTINUITY.

A continuous beam is one supported upon several points in

the same horizontal plane. A simple beam may be regarded

as a particular case of a continuous beam where the number of

supports is two. The ends of a continuous beam are said to

be free when they overhang, supported when they merely rest

on abutments, and restrained when they are horizontally fixed

in walls.

The general principles of the preceding chapter hold good
for all kinds of beams. If a plane be imagined to cut any
beam at any point the laws of Arts. 19 and 20 apply to the

stresses in that section. The resisting shear and the resisting

moment for that section have the values deduced in Art. 21

and the two fundamental formulas for investigation are,

(3) ScA = V,

(4)
*L=M

Here .S, is the vertical shearing unit-stress in the section, and

5 is the horizontal tensile or compressive unit-stress on the

fiber most remote from the neutral axis
;
c is the shortest dis-

tance from that fiber to that axis ; / the moment of inertia,

and A the area of the cross-section. V is the vertical shear of

the external forces on the left of the section, and M is the

bending moment of those forces with reference to a point in

the section. For any given beam evidently 5S and .S may be

found for any section as soon as V and M are known.

The general equation of the elastic line, deduced in Art. 33,

is also valid for all kinds of beams. It is,

(0 d'/_M_
'

~dx> El
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where x is the abscissa and y the ordinate of any point of the

elastic curve, M being the bending moment for that section,

and E the coefficient of elasticity of the material.

The vertical shear V is the algebraic sum of the external

forces on the left of the section, or, as in Art. 17,

V Reactions on left of section minus loads on left of section.

For simple beams and cantilevers the determination of V
for any special case was easy, as the left reaction could be

readily found for any given loads. For continuous beams,

however, it is not, in general, easy to find the reactions, and

hence a different method of determining V is necessary. Let

Fig. 37 represent one span of a continuous beam. Let Fbe

the vertical shear for any ^ ^ ^
section at the distance x

^ ^--J,
PI

j

from the left support, and ) i

j

\

V the vertical shear at a jp~
section infinitely near to Fig. 38.

the left support. Also let 2P
l
denote the sum of all the con-

centrated loads on the distance x, and wx the uniform load.

Then because V is the algebraic sum of all the vertical forces

on its left, the definition of vertical shear gives,

(6) V= V wx 2P
t

.

Hence Fcan be determined as soon as V is known.

The bending moment M is the algebraic sum of the mo-

ments of the external forces on the left of the section with ref-

erence to a point in that section, or, as in Art. 18,

M= moments of reactions minus moments of loads.

For the reason just mentioned it is in general necessary to de-

termine M for continuous and restrained beams by a different

method. Let M' denote the bending moment at the left sup-

port of any span as in Fig. 30, and M" that at the right sup-
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port, whileM is the bending moment for any section distant x
from the left support. Let P

l
be any concentrated load upon

the space x at a distance >/ from the left support, k being a

fraction less than unity, and let w be the uniform load per lin-

ear unit. Let V be the resultant of all the vertical forces on

the left of a section in the given span infinitely near to the

left support, and let m be the distance of the point of applica-

tion of that resultant from that support, Then the definition

of bending moment gives,

M=
But V'm is the unknown bending moment M' at the left

support. Hence

(7) M= M'+ V'x - \wx* -2.P,(x -kl\

from which M may be found for any section as soon as M' and

V have been determined.

The vertical shear V at the support may be easily found if

the bending moments M' and M" be known. Thus in equa-

tion (7) make x = /, then M becomes M", and hence,

The whole problem of the discussion of restrained and con-

tinuous beams hence consists in the determination of the bend-

ing moments at the supports. When these are known the

values of M and Fmay be determined for every section, and

the general formulas (3), (4), and (5) be applied as in Chapter

III, to the investigation of questions of strength and deflec-

tion. The formulas (6), (7), and (8) apply to cantilever and

simple beams also. For a simple beam M' = M" = o, and

V = R- For a cantilever beam M1 = o for the free end, and

M" is the moment at the wall.

The relation between the bending moment and the vertical
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shear at any section is interesting and important. At the sec-

tion x the moment is M and the shear is V. At the next con-

secutive section x -j- dx the moment is M'

-\- dM, which may
also be expressed by M-\- Vdx. Hence,

v= dM
dx

This may be proved otherwise by differentiating (7) and com-

paring with (6). From this it is seen that the maximum mo-

ments occur at the sections where the shear passes through
zero.

Prob. 79. A bar of length 2/ and weighing w per linear

unit is supported at the middle. Apply formulas (6) and (7)

to the statement of general expressions for the moment and

shear at any section on the left of the support, and also at any
section on the right of the support.

ART. 46. PROPERTIES OF CONTINUOUS BEAMS.

The theory of continuous beams presented in the following

pages includes only those with constant cross-section having
the supports on the same level, as only such are used in engin-

eering constructions. Unless otherwise stated, the ends will

be supposed to simply rest upon their supports, so that there

can be no moments at those points. Then the end spans are

somewhat in the
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As shown in Art. 45, the investigation of a continuous beam

depends upon the determination of the bending moments at

the supports. In the case of Fig. 39 these moments being
those at the supports 2, 3, and 4, may be designated Mt ,

M
3 ,

and MI . Let F, ,
F

a ,
V

t ,
and F

4
denote the vertical shear at the

right of each support. The first step is to find the moments

M
3 ,M3 ,

and M, . Then from formula (8) the values of V, , V^
V

t ,
and F4

are found, and thus by formula (7) an expression for

the bending moment in each span may be written, from which

the maximum positive moments may be determined. Lastly,

by formulas (3) and (4) the strength of the beam may be in-

vestigated, and by (5) its deflection at any point be deduced.

For example, let' the beam in Fig. 39 be regarded as of four

equal spans and uniformly loaded with w pounds per linear

unit. By a method to be explained in the following articles it

may be shown that the bending moments at the supports are,

From formula (8) the vertical shears at the right of the several

supports are,

F; = ttw/, Vt = ftwl, V
t
= ftwl, etc.

And from (6) those on the left of the supports 2, 3, 4, etc., are

found to be, ffiwl, %\ivl, %^wl, etc. From formula (7)

the general expressions for the bending moments now are,

For first span, M=
For second span, M=
For third span, M= ^wl* + %%wlx

For fourth span, M= ^wl* + ftwlx

From each of these equations the inflection points may be

found by putting M=o, and the point of maximum positive

moment by putting
- = o. The maximum positive mo-
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ments are found to have the following values,

TV\W> Tfte*''. TU^\ and tffavl*.

For any particular case the beam may now be investigated by
formulas (3) and (4).

The reactions at the supports are not usually needed in the

discussion of continuous beams, but if required they may
easily be found from the adjacent shears. Thus for the above

case,

= |fwl,

R, =//+ ifw/= ffw/, etc.,

and the sum of these is equal to the total load ^wl.

The equation of the elastic curve in any span is deduced by

inserting in (5) for M its value and integrating twice. When
dyx = o, the tangent ~- is the tangent of the inclination at the

left support, and when x = I it is the tangent of the inclination

at the right support. When x = o, and also when x = /, the

ordinate y = o, and from these conditions the two unknown

tangents may be found. In general the maximum deflection

in any span of a continuous beam will be found intermediate

in value between those of a simple beam and a restrained

beam.

In the following pages continuous beams will only be inves-

tigated for the case of uniform load. The lengths of the spans

however may be equal or unequal, and the load per linear foot

may vary in the different spans.

Prob. 80. In a continuous beam of three equal spans the

negative bending moments at the supports are fawl*. Find

the inflection points, the maximum positive moments and the

reactions of the supports.
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ART. 47. THE THEOREM OF THREE MOMENTS.

Let the figure represent any two adjacent spans of a continu-

ous beam whose lengths are /' and I" and whose uniform loads

per linear foot are w' and w" respectively. Let M', M", and

M'" represent the

^^^^^^5%^%%%%%%^
'

*"
Of'"

tnree unknown mo-

i
i

7 '

--^
1 ments at the supports.

&*v > ZSFF7 ' s Let F and V" be the

vertical shears at the
Fig - 4a

right of the first and

second supports. Then, for any section distant x from the

left support in the first span, the moment is,

If this be inserted in the general formula (5) and integrated

twice and the constants determined by the condition that

y = o when x = o and also when x = /, the value of the tan-

gent of the angle which the tangent to the elastic curve at any
section in the first span makes with the horizontal is found

to be,

dy _ \2M'(2x - /Q + 4V'(^ -n ~ w'(V? - I"}

dx 24EI

Similarly if the origin be taken at the next support the value

of the tangent of inclination at any point in the second span is,

dy_ _ \2M"(2x - I"

dx
~

24EI

Evidently the two curves must have a common tangent at the

support. Hence make x I' in the first of these and x = o

in the second and equate the results, giving,

= - \2M"l" -V"l"wnl"\
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Let the values of V and V" be expressed by (8) in terms of

M f

, M", and M'", and the equation reduces to,

(9) M'l'

which is the theorem of three moments for continuous beams

uniformly loaded.

If the spans are all equal and the load uniform throughout,

this reduces to the simpler form,

M' + 4M" + M'" = -.
In any continuous beam of s spans there are s -\- I supports

and s i unknown bending moments at the supports. For

each of these supports an equation of the form of (9) may be

written containing three unknown moments. Thus there will

be stated s i equations whose solution will furnish the values

of the s I unknown quantities.

Prob. 8 1. A simple wooden beam one inch square and 15

inches long is uniformly loaded with 100 pounds. Find the

angle of inclination of the elastic curve at the supports.

ART. 48. CONTINUOUS BEAMS WITH EQUAL SPANS.

Consider a continuous beam of five equal spans uniformly
loaded. Let the supports beginning on the left be numbered

i, 2, 3, 4, 5, and 6. From the theorem of three moments an

equation may be written for each of the supports 2, 3, 4, and

5 ; thus,
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Since the ends of the beam rest on abutments without restraint

M! = J/
8
= o. Hence the four equations furnish the means

of finding the four moments M9 ,
M

3 ,
M

4 ,
M

t
. The solution

may be abridged by the fact that Mt
= M

t ,
and M

3
= M^

which is evident from the symmetry of the beam. Hence,

From formula (8) the shears at the right of the supports are,

etc.

From (7) the bending moment at any point in any span may
now be found as in Art. 46, and by (3), (4), and (5) the complete

investigation of any special case may be effected.

In this way the bending moments at the supports for any
number of equal spans can be deduced. The following tri-

angular table shows their values for spans as high as seven in

number. In each horizontal line the supports are represented

by squares in which are placed the coefficients of wT. For

example, in a beam of 3 spans there are four supports and the

bending moments at those supports are o, -fowl*,

and o.

/^ 7\
-
_____No._ofS.Eans_l_

Equal Spans.

Moments.

Fig. 41.

The vertical shears at the supports are also shown in the

following table for any number of spans up to 5. The space

representing a support shows in its left-hand division the shear

on the left of that support and in its right-hand division







ART. 48. CONTINUOUS BEAMS WITH EQUAL SPANS. 105

the shear on the right. The sum of the two shears for any

support is, of course, the reaction of that support. For ex-

ample, in a beam of five equal spans the reaction at the second

support is

Fig. 42.

It will be seen on examination that the numbers in any

oblique column of these tables follow a certain law of increase

by which it is possible to extend them, if desired, to a greater

number of spans than are here given.

As an example, let it be required to select a I beam to span
four openings of 8 feet each, the load per span being 14000

pounds and the greatest horizontal stress in any fiber to be

12 ooo pounds per square inch. The required beam must

satisfy formula (4), or,

/_ M
C~ 12 OOO

where M is the maximum moment. From the table it is seen

that the greatest negative moment is that at the second sup-

port, or ~wr. The maximum positive moments are,
2o

T71

For first span,

F2

For second span, max M M, -4 =
2W
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The greatest value of M is hence at the second support. Then,

/ = 3 X 14000 X 8 X 12 _ I2
c 28 X 12 ooo

and from the table in Art. 30 it is seen that a light 7-inch beam
will be required.

Prob. 82. Draw the diagram of shears and the diagram of

moments for the case of three equal spans uniformly loaded.

Prob. 83. Find what I beam is required to span three open-

ings of 12 feet each, the load on each span being 6000 pounds,
and the greatest value of 5 to be 12000 pounds per square
inch.

ART. 49. CONTINUOUS BEAMS WITH UNEQUAL SPANS.

As the first example, consider two spans whose lengths are

/,,/,, and whose loads per linear unit are w
t
and w

a . The
theorem of three moments in (9) then reduces to,

and hence the bending moment at the middle support is,

From this the reaction at the left support may be found by (8)

and the bending moment at any point by (7).

Next consider three spans whose lengths are /,,/,, and /
3 ,

loaded uniformly with w
l ,
w

a , w3
. The bending moments at

the second and third supports are M^ and M
3

. Then from (9),

and the solution of these gives the values of J/
2 and Ma

. A
very common case is that for which /

a
=

/, /,
= /

3
= nl, and

w
l
= wt

= w
a
= w. For this case the solution gives,

^ _ ^ _ J + "

^
4

'
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Here if n = i, these two moments become -nr^/", as also

shown in the last article.

Whatever be the lengths of the spans or the intensity of the

loads, the theorem of three moments furnishes the means of

finding the bending moments at the supports. Then from (8),

(7), and (6) the vertical shears and bending moments at every

section may be computed. Finally, if the material be not

strained beyond its elastic limit, formula (5) may be used to

determine the deflection, while (4) investigates the strength of

the beam.

Prob. 84. A continuous beam of three equal spans is loaded

only in the middle span. Find the reactions of the end sup-

ports due to this load.

Prob. 85. A heavy 12-inch I beam of 36 feet length covers

four openings, the two end ones being each 8 feet and the

others each 10 feet in span. Find the maximum moment in

the beam. Then determine the load per linear foot so that the

greatest horizontal unit-stress may be 12 ooo pounds per square
inch.

ART. 50. REMARKS ON THE THEORY OF FLEXURE.

The theory of flexure presented in this and the preceding

chapter is called the common theory, and is the one universally

adopted for the practical investigation of beams. It should not

be forgotten, however, that the axioms and laws upon which

it is founded are only approximate and not of an exact nature

like those of mathematics. Laws (A} and (B] for instance are

true as approximate laws of experiment, but probably not as

exact laws of science. Law (G) indeed rests upon so slight

experimental evidence that it is more of a hypothesis than an

established truth. Objections may also be raised against the

formula (3) which supposes the vertical shear to be uniformly

distributed over the cross-section.
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When experiments on beams are carried to the point of rup-

ture and the longitudinal unit-stress 5 computed from formula

(4) a disagreement of that value with those found by direct

experiments on tension or compression is observed. This is

often regarded as an objection to the common theory of flexure,

but it is in reality no objection, since law (G) and formula (4)

are only true provided the elastic limit of the material be not

exceeded. Experiments on the deflection of beams furnish on

the other hand the most satisfactory confirmation of the theory.

When E is known by tensile or compressive tests the formulas

for deflection are found to give values closely agreeing with

those observed. Indeed so reliable are these formulas that it

is not uncommon to use them for the purpose of computing E
from experiments on beams. If however the elastic limit of

the material be exceeded, the computed and observed deflec-

tions fail to agree.

On the whole it may be concluded that the common theory

of flexure is entirely satisfactory and sufficient for the investi-

gation of all practical questions relating to the strength and

stiffness of beams. The actual distribution of the internal

stresses is however a matter of very much interest and this will

be discussed at some length in Chapter VIII.

The theory of flexure is here applied to continuous beams

only for the case of uniform loads. It should be said however

that there is no difficulty in extending it to the case of concen-

trated loads. By a course of reasoning similar to that of Art.

48 it may be shown that the theorem of three moments for

single loads is,

M'l'+ 2M"(l' + /") -f M'"l" = P'l'\k
-

/i-

3

)- P"'I
'"

(2k -3/P-f/P).

Here as in Fig. 37 the moments at three consecutive supports

are designated by M', M", and M'" and the lengths of the two

spans by /' and I". P' is any load on the first span at a dis-
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tance kl' from the left support and P" any load on the second

span at a distance kl" from the left support, k being any frac-

tion less than unity and not necessarily the same in the two

cases. From this theorem the negative bending moments at

the supports for any concentrated loads may be found, and the

beam be then investigated by formulas (6) and (4). For ex-

ample, if a beam of three equal spans be loaded with P at the

middle of each span, the negative moments at the supports

are each
^Pl.

The Journal of the Franklin Institute for March and April,

1875, contains an article by the author in which the law of in-

crease of the quantities in the tables of Art. 48 is explained

and demonstrated. A general abbreviated method of deduc-

ing the moments at the supports for both uniform and concen-

trated loads on restrained and continuous beams is given in ti^e

Philosophical Magazine for September, 1875. See also Van
Nostrand's Science Series, No. 25.

Exercise 4. Consult BARLOW'S Strength of Materials (Lon-
don, 1837), and write an essay concerning his experiments to

determine the laws of the strength and stiffness of beams. Con-

sult also BALL'S Experimental Mechanics.

Exercise 5. Consult Engineering News, Vol. XVIII, pp. 309,

352, 404, 443; Vol. XIX, pp. n, 28, 48, 84; and Vol. XXII,

p. 121. Write an essay concerning certain erroneous views re-

garding the theory of flexure which are there discussed. Con-

sult also TODHUNTER'S History of the Elasticity and Strength
of Materials.

Exercise 6. Procure six sticks of ash each f X | inches and

of lengths about 8, 12, and 16 inches. Devise and conduct

experiments to test the following laws : First, the strength of a

beam varies directly as its breadth and directly as the square
of its depth. Second, the stiffness of a beam is directly as its

breadth and directly as the cube of its depth. Third, a beam
fixed at the ends is twice as strong and four times as stiff as a
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simple beam when loaded at the middle. Write a report

describing and discussing the experiments.

Exercise 7. In order to test the theory of continuous beams

discuss the following experiments by FRANCIS and ascertain

whether or not the ratio of the two observed deflections agrees

with theory. "A frame was erected, giving 4 bearings in the

same horizontal plane, 4 feet apart, making 3 equal spans, each

bearing being furnished with a knife edge on which the beam
was supported. Immediately over the bearings and secured to

the same frame was fixed a straight edge, from which the de-

flections were measured. A bar of common English refined

iron, 12 feet 2f inches long, mean width 1.535 inches, mean

depth 0.367 inches, was laid on the 4 bearings, and loaded at

the center of each span so as to make the deflections the same,

the weight at the middle span being 82.84 pounds and at each

of the end spans 52.00 pounds. The deflections with these

weights were,

At the center of the middle span 0.281 inches.

At center of end spans, 0.275 and 0.284 inches,

mean 0.280 inches.

A piece 3 feet ii inches long was then cut from each end of

the bar, leaving a bar 4 feet 4| inches long, which was replaced
in its former position and loaded with the same weight (82.84

pounds) as before, when its deflection was found to be 1.059

inches."

Prob. 86. A beam of three spans, the center one being / and

the side ones /, is loaded with P at the middle of each span.
Find the value of n so that the reactions at the end may be

one-fourth of the other reactions.

Prob. 87. Let a beam whose cross-section is an isosceles tri-

angle have the base b and the depth d. Prove that if 0.13^ be

cutoff from the vertex the remaining trapezoidal beam will

be about 9 per cent stronger than the triangular one.
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CHAPTER V.

THE COMPRESSION OF COLUMNS.

ART. 51. CROSS-SECTIONS OF COLUMNS.

A column is a prism, greater in length than about ten times

its least diameter, which is subject to compression. If the

prism be only about four or six times as long as its least diam-

eter the case is one of simple compression, the constants for

which are given in Art. 6. In a case of simple compression
failure occurs by the crushing and splintering of the material,

or by shearing in directions oblique to the length. In the case

of a column, however, failure is apt to occur by a sidewise

bending which induces transverse stresses and causes the ma-

terial to be highly strained under the combined compression
and flexure.

Wooden columns are usually square or round and they may
be built hollow. Cast iron columns are usually round and they
are often cast hollow. Wrought iron columns are made of a

great variety of forms. A I may be used as a column, but they
are usually made of three or more different shape-irons riveted

together. The Phoenix column is made by riveting together

flanged circular segments so as to form a dosed cylinder. It is

clear that a square or round section is preferable to an unsym-
metrical one, since then the liability to bending is the same in

all directions. For a rectangular section the plane of flexure

will evidently be perpendicular to the longer side of the cross-

section, and in general the plane of flexure will be perpendicular

to that axis of the cross-section for which the moment of in-

ertia is the least. In designing a column it is hence advisable
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that the cross-section should be so arranged that the moments

of inertia about the two principal rectangular axes may be

approximately equal.

For instance, let it be required to construct a column with

two I shapes and two plates as shown in Fig. 43. The I beams

are to be light lo-inch ones weighing 30

pounds per linear foot, and having the

flanges 4.32 inches wide. The plates are

to be inch thick, and it is required to

find their length x so that the liability to

bending about the two axes shown in the

figure may .be the same. From the table

Fie- in Art. 30 it is ascertained that the moment
of inertia / of the beam about an axis through its center of

gravity and perpendicular to the web is 150, while the moment
of inertia /' about an axis through the same point and parallel

to the web is nearly 8. Hence, for the axes shown in the

figure, the moments of inertia are,

For axis perpendicular to plates,

2-~~+ 2 X8 + 2X9x(f-2.i6)'.
For axis parallel to plates,

2
* *

2

' 5 + 2 X 0.5* X 5-25' + 2 X 150.

Placing these two expressions equal, the value of x is found to

be between 14 and 14^ inches.

Prob. 88. A column is to be formed of two light 1 2-inch eye-

beams connected by a lattice bracing. Find the proper distance

between their centers, disregarding the moment of inertia of

the latticing.

Prob. 89. Two joists each 2X4 inches are to be placed 6

inches apart between their centers, and connected by two others

each 8 inches wide and x inches thick so as to form a closed

hollow rectangular column. Find the proper value of x.







ART. 52. GENERAL PRINCIPLES.

ART. 52. GENERAL PRINCIPLES.

If a short prism of cross-section A be loaded with the weight

P, the internal stress is to be regarded as Uniformly distributed

over the cross-section, and hence the compressive unit-stress Sc

p
is -.-. But for a long prism, or column, this Is not the case;A

P
while the average unit-stress is -r

,
the stress in certain parts of

the cross-section may be greater and upon others less than this

value on account of the transverse stresses due to the sidewise

flexure. Hence in designing a column the load P must be

taken as smaller for a long one than for a short one, since evi-

dently the liability to bending increases with the length.

Numerous experiments on the rupture of columns have

shown that the load causing the rupture is approximately in-

versely proportional to the square of the length of the column.

That is to say, if there be two columns of the same material

and cross-section and one twice as long as the other, the long
one will rupture under about one-quarter the load of the

short one.

The condition of the ends of columns exerts a great influence

upon their strength. Class (a) includes those with ' round ends,'

or those in such condition that they are free to turn at the ends.

Class (c) includes those whose ends

are ' fixed' or in such condition that

the tangent to the curve at the ends

always remains vertical. Class (b)

includes those with one end fixed

and the other round. In architecture

it is rare that any other than class (c)

is used. In bridge construction and

in machines, however, columns of Flg ' 44 '

classes (6) and (a) are very common. It is evident that class (c)
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is stronger than (6), and that (b) is stronger than (a), and this is

confirmed by all experiments. Fig. 44 is intended as a sym-

bolical representation of the three classes of columns, and not

as showing how the ends are rendered 'round' and 'fixed' in

practical constructions.

The theory of the resistance of columns has not yet been

perfected like that of beams, and accordingly the formulas for

practical use are largely of an empirical character. The form

of the formulas however is generally determined from certain

theoretical considerations, and these will be presented in the

following articles as a basis for deducing the practical rules.

Prob. 90. A pillar formed of two I beams each weighing 93

pounds per yard is 1 1 inches square and 3 feet long. What
load will it carry with a factor of safety of 5 ?

ART. 53. EULER'S FORMULA.

Consider a column of cross-section A loaded with a weight P
IP under whose action a certain small sidewise bending

1 occurs. Let the column be round, or free to turn at

both ends as in Fig. 45. Take the origin at the upper

end, and let x be the vertical and y the horizontal co-

ordinate of any point of the elastic curve. The gen-

eral equation (5) deduced in Art. 33, applies to all

bodies subject to flexure provided the bending be

slight and the elastic limit of the material be not ex-

ceeded. For the column the bending moment is

Fig. 45- Py, the negative sign being used because the curve

is concave to the axis of x \ hence,

The first integration of this gives,
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dy
But when y = the maximum deflection A, the tangent = o.

Hence C = PA"1

,
and by inversion,

The second integration now gives,

x = (-p) arc sin ^ -\- C'.

Here C' is o because y = o when x = o. Hence finally the

equation of the elastic curve of the column is,

This equation is that of a sinusoid. But also y = o when

x = L Hence if n be an integer, l\-pj\
must equal nn, or,

P=EI%
which is EULER'S formula for the resistance of columns. This

reduces the equation of the sinusoid to,

. .
x

y = A sin
rntj.

The three curves for n = I, n = 2, and n = 3 are shown in

Fig. 46. In the first case the

curve is entirely on one side of

the axis of x, in the second case

it crosses that axis at the mid-

dle, and in the third case it

crosses at \l and /, the points

of crossing being also inflection

points where the bending mo-

ment is zero. Evidently the

greatest deflection will occur for the case where n = i, and
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this is the most dangerous case. Hence,

|

'

(a) P-,
is EULER'S formula for columns with round ends.

A column with one end fixed and the other round is closely

represented by the portion b'b" of the second case, V being
the fixed end where the tangent to the curve is vertical. Here

n = 2, and the length b'b" is three-fourths of the entire length,

hence,

is EULER'S formula for columns with one end fixed and the

other round.

A column with fixed ends is represented by the portion c'c"

of the case c. Here n = 3, and the length c'c" is two-thirds of

the entire length, hence,

W " = 4

is EULER'S formula for columns with fixed ends.

From this investigation it appears that the relative resist-

ances of three columns of the classes (a), (b\ and (c) are as the

numbers i, 2\, and 4, when the lengths are the same, and this

conclusion is approximately verified by experiments. It also

appears that, if the resistance of three columns of the classes

(a), (b\ and' (c) are to be equal, their lengths must be as the

numbers i, i, and 2.

The moment of inertia / in the above formulas is taken about

a neutral axis of the cross-section perpendicular to the plane of

the flexure, and in general is the least moment of inertia of

that cross-section, since the column will bend in the direction

which offers the least resistance. For a rectangular column
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whose greatest side is b and least side d, the formulas may be

written,
mn*Ebd*P = ,

where m = I, 24, or 4.
I2/

2

For a cylindrical column of diameter d the formulas are,

inn*Ed* ,P = ,
where m = I, 2\, or 4.

Hence the strength of a column varies directly as its cross-sec-

tion and directly as the square of its least diameter or side. In

general if r be the least radius of gyration of the cross-section

the value of /is Ar* and the formula may be written,

P mifEf=
,

where mi, 2$, or 4,

which shows that P varies as the square of the ratio of r to /.

The maximum deflection A is indeterminate, so that the load

P, given by EULER'S formula, is merely the load which causes

the column to bend. Practically the bending of a column is

the beginning of its failure.

Prob. 91. Show that EULER'S formula for the case of a column
P * *

fixed at one end and entirely free at the other is =
A 4/'

'

ART. 54. HODGKINSON'S FORMULAS.

EULER'S formula gives valuable information regarding the

laws of flexure of columns, but is difficult of direct practical

application because it indicates no relation between the load P
and the greatest internal compressive unit-stress. It shows

that the strength of cylindrical columns varies directly as the

fourth power of the diameter and inversely as the square of

the length. HODGKIXSON in his experiments observed that

this was approximately but not exactly the case. He therefore
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wrote for each kind of columns the analogous expression,

and determined the constants a, /3, and 6 from the results of

his experiments, thus producing empirical formulas.

Let P be the crushing load in gross tons, d the diameter of

the column in inches, and / its length in feet. Then HODG-
KINSON'S empirical formulas are,

For solid cast iron cylindrical columns,

^3-5P = 14.9- for round ends,

^3.5P = 44.2^ for flat ends,

For solid wrought iron cylindrical columns,

^3-76P =
42-77-

f r round ends;

i/3.76P =
134-^-

for flat ends.

These formulas indicate that the ultimate strength of flat-ended

columns is about three times that of round-ended ones. The

experiments also showed that the strength of a column with

one end flat and the other end round is about twice that of

one having both ends round. HODGKINSON'S tests were made

upon small columns and his formulas are not so reliable as

those which will be given in the following articles. For small

cast iron columns however the formulas are still valuable.

By the help of logarithms it is easy to apply these formulas

to the discussion of given cases. Usually P will be given and

d required, or d be given and P required. By using assumed

factors of safety the proper size of cylindrical columns to carry

given loads may also be determined. These formulas, it should

be remembered, do not apply to columns shorter than about
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thirty times their least diameters. The word flat used in this

Article is to be regarded as equivalent to fixed.

Prob. 92. A cast iron cylindrical column with flat ends is 3

inches diameter and 8 feet long. What load will cause it

to fail?

Prob. 93. A cast iron cylindrical column with flat ends is to

be 7 feet long and carry a load of 200 ooo pounds with a factor

of safety of 6. Find the proper diameter.

ART. 55. GORDON'S FORMULA.

The formulas of EULER are defective because they contain

no constant indicating the working or ultimate compressive

strength of the material and because they apply only to long

columns. HODGKINSON'S formulas are unsatisfactory for simi-

lar reasons and because they do not well represent the results

of later experiments. GORDON'S formula was deduced to

remedy these defects. It may be established by
the following considerations.

Let the column be of rectangular section,

the area being A, the least side d, the greatest

side b, and the length /. Let P be the load

upon it. The average compressive unit-stress

at any section is
,

but in consequence of

the sidewise deflection this is increased on the

concave side and decreased on the convex

side by an amount S. From the fundamen-

tal equation (4) the value of 5 is
,
and if A be

the maximum deflection the greatest value of
Fig. 47-

is -r-75-. Now if Sc be the total compressive unit-stress on the
bd
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p
concave side 5 = Sc ,

and hence,A

P _ 6PA 6PA_
~A
~

bd*
~

Ad
'

Accordingly the value of 5, is

P P 6J

The value of A is unknown, but if the curve of deflection be an

arc of a circle, which it is very nearly, A equals approximately

r
-

,
in which R represents the radius of curvature of the column.

OR

Now, as in Art. 33, the value of R for the same unit-stress 5

varies directly as c or as the depth d. Hence A may be taken

as varying directly as /" and inversely as d. Accordingly if k

be a number depending upon the kind of material and the

arrangement of the ends of the column, the value of Sc may
be written,

P P r

From this the value of the unit-load is,A

P = S<

A
"

which is called GORDON'S formula for resistance of columns.

The quantity k cannot be determined theoretically. As the

above reasoning shows, its value varies with the form of cross-

section as well as with the kind of material and the arrange-

ment of the ends of the column. For instance, the value of k

is not the same for a circular section with diameter d as for a

rectangular section whose least side is d. It is however not
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uncommon to find this formula stated as applicable to any
cross-section whose least diameter is d.

In order to determine k recourse must be had to experiments.

These are usually conducted by loading columns to the point

of rupture; P, A, /, and d are known, and thus the constants

Sc and k may be computed. Theoretically Sc is the ultimate

compressive strength of the material and the values found for

it by experiments on columns agree roughly with those deduced

by the direct crushing of short specimens. The value of k is

always less than unity and it is subject to great variation, even

in columns of the same material. For a column with round

ends k is to be regarded four times as great as for a column

with fixed ends, since both experiment and theory indicate that

a fixed-ended column of length 2/ has the same strength as a

round-ended column of length /. Therefore for the ultimate

strength of columns,

For fixed ends, -j
=

r^-,

For round ends, =
A

The following values of Sc and k were deduced by GORDON
from HODGKINSON'S experiments.

For stone and brick, Sc
= (Art. 6), k =

Tr ir,

For timber (rectangular sections), Sc
= 7 200, k = ^ ,

For cast iron cylinders, Sc
= So ooo, k = -^,

For wrought iron (rectangular sections), Sc
= 36 ooo, k =

-5-3^-$,

These values of Sc are in pounds per square inch, while those

of k are abstract numbers.

The theoretical deduction of the above formula was first

made by TREDGOLD, and it is hence sometimes referred to as
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TREDGOLD'S formula. The reasoning by which it is deduced

is not entirely satisfactory, and it often fails to properly repre-

sent the results of experiment.

Prob. 94. Find the values of Sc and k from the two follow-

ing experiments on flat-ended Phoenix columns. The sectional

area of each column was 12 square inches and the exterior di-

ameter 8 inches. The length of the first column was 25 feet,

and it failed under a load of 420 ooo pounds. The length of

the second column was 10 feet, and it failed under a load of

478 ooo pounds.

ART. 56. RANKINE'S FORMULA.

The formula which seems to most satisfactorily represent

the results of experiments will now be deduced. It is some-

times called GORDON'S formula, and occasionally it is referred

to as " GORDON'S formula modified by RANKINE," but the best

usage gives to it the name of RANKINE'S formula. It is simi-

lar to the formula of the last Article, but has the advantage of

being applicable to any form of cross-section.

Let P be the load on the column, / its length, A the area of

its cross-section, 7 the moment of inertia, and r the radius of

gyration of that cross-section with reference to a neutral axis

perpendicular to the plane of flexure, and c the shortest dis-

tance from that axis to the remotest fiber on the concave side.

The average compressive unit-stress on

p
any cross-section is

,
but in consequenceA

of the flexure this is increased on the

concave side, and decreased on the con-

vex side. Thus in Fig. 48 the average

p
Fi 8

unit-stress -r is represented by cd, but on

the concave side this is increased to aq, and on the convex

side decreased to bq. The triangles pdq and qdp represent
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the effect of the flexure exactly as in the case of beams, pq

indicating the greatest compressive and qp the greatest ten-

sile unit-stress due to the bending. Let the total maximum
unit-stress aq be denoted by Sc and the part due to the flexure

be denoted by 5. Then,

Now, from the fundamental formula (4) the flexural stress is

,
where Mis the external bending moment, which for a col-

umn has its greatest value when M = PA, A being the maxi-

mum deflection. /= Ar* is the well-known relation between /

and r. Hence the value of 5 is,

c-_ _=
~7~ ~~A?'

By analogy with the theory of beams, as in Art. 37, the value

/
of A may be regarded as varying directly as . Hence if q be

a quantity depending upon the kind of material and the con-

dition of the ends, the total unit-stress is,

c p
,

P^
*-Z+2?'

This may now be written in the usual form,

P__ Sc

do ^
I+ /:'

which is RANKINE'S formula for the investigation of columns.

The above reasoning has been without reference to the ar-

rangement of the ends of the column. By Art. 53 it is known

that a column with round ends must be one half the length of

one with fixed ends in order to be of equal strength, and that

a column with one end fixed and the other round must be
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three fourths the length of one with fixed ends in order to be

of equal strength. Therefore if q be the constant for fixed

ends, (-f)V will be the constant for one end fixed and the other

round, and 2*q will be the constant for both ends round.

The values of q to be taken for use in formula (10) for the

examples and problems of this chapter may be the following

rough values, unless otherwise stated, while the values of

the ultimate compressive unit-stress Sc will be taken from

the table in Art. 6.

Material.
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tia of the surface referred to the same axis to the area of the

figure. Or if r be radius of gyration, 7 the moment of inertia,

and A the area of the surface, then I =Ar*.

In the investigation of columns by formula (10) the value of

r* is required, r being the least radius of gyration. These,

values are readily derived from the expressions for the mo-

ment of inertia given in Art. 23, the most common cases being

the following,

For a rectangle whose least side is d,

For a circle of diameter d,

For a triangle whose least altitude is d,

For a hollow square section,

For a hollow circular section,

For I beams and other shapes, r
2
is found by dividing the least

moment of inertia of the cross-section by the area of that cross-

section. For instance, by the help of the table in Art. 30, the

least value of r
2

for a light 1 2-inch I beam is found to be

{? = 0.87 inches
3

.

Prob. 96. Compute the least radius of gyration for a T iron

whose width is 4 inches, depth 4 inches, thickness of flange

inches, and thickness of stem ^f inches.

ART. 58. INVESTIGATION OF COLUMNS.

The investigation of a column consists in determining the

maximum compressive unit-stress Sc from formula (10). The

values of P, A, I, and r will be known from the data of the given

case, and q is known from the results of previous experiments.

Then, p
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and, by comparing the computed value of 5, with the ultimate

strength and elastic limit of the material, the factor of safety

and the degree of stability of the column may be inferred.

For example, consider a hollow wooden column of rectangu-

lar section, the outside dimensions being 4X5 inches and the

inside dimensions 3X4 inches. Let the length be 18 feet,

the ends fixed, and the load be 540x3 pounds. Here P=
5400, A = 8 square inches, /=2i6 inches. From the table

q _i_. From Art. 57,

5 X43 -4X3 3

_ 22I
12 X 8

Then the substitution of these values gives,

_ 5400/ 216 X 216 \
Sc
=

g- l^i
+ 30QOX22J

= 5430 pounds per square inch.

Here the average unit-stress is 675 pounds per square inch,

but the flexure has increased that stress on the concave side to

5 430 pounds per square inch, so that the factor of safety is

only about \\.

Prob. 97. A cylindrical wrought iron column with fixed ends

is 12 feet long, 6.36 inches in exterior diameter, 6.02 inches in

interior diameter, and carries a load of 98 ooo pounds. Find

its factor of safety.

Prob. 98. A pine stick 3X3 inches and 12 feet long is used

as a column with fixed ends. Find its factor of safety under a

load of 3 ooo pounds. If the length be only one foot, what is

the factor of safety?

ART. 59. SAFE LOADS FOR COLUMNS.

To determine the safe load for a given column it is necessary

to first assume the allowable working unit-stress Sc . Then from

formula (10) the safe load is,
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Here A, /, and r are known from the data of the given problem

and q is taken from the table in Art. 56.

For example, let it be required to determine the safe load

for a fixed-ended timber column, 3X3 inches square and 12

feet long, so that the greatest compressive unit-stress may be

800 pounds per square inch. From the formula,

800 Xp __ _ _ aoout 700 pounds.
1 +

3 ooo X 3~

a

A short prism 3X3 inches should safely carry ten times this

load.

Prob. 99. Find the safe load for a heavy wrought iron I of

15 inches depth and 10 feet length when used as a column with

fixed ends, the factor of safety being 4.

Prob. 100. Find the safe steady load for a hollow cast iron

column with fixed ends, the length being 18 feet, outside

dimensions 4X5 inches, inside dimensions 3X4 inches.

ART. 60. DESIGNING OF COLUMNS.

When a column is to be selected or designed the load to be

borne will be known, as also its length and the condition of the

ends. A proper allowable unit-stress Sc is assumed, suitable for

the given material under the conditions in which it is used.

Then from formula (i) the cross-section of a short column or

p
prism is -=-, and it is certain that a greater value of the cross-

O^.

section than this will be required. Next assume a form and

area A, find r\ and from the formula (10) compute Sc . If the

computed value agrees with the assumed value the correct size

has been selected. If not, assume a new area and compute Se

again, and continue the process until a proper agreement is

attained.
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For example, a hollow cast iron rectangular column of 18 feet

length is to carry a load of 60 ooo pounds. Let the working

strength S be 15 ooo pounds per square inch. Then for a short

length the area required would be four square inches. Assume

then that about 6 square inches will be needed. Let the sec-

tion be "square, the exterior dimensions 6x6 inches, and the in-

terior dimensions 5! X 5i inches. Then A = 5.75, /= 18 X 12,

P= 60000, q= ^5, r
2 = 5.52, and from (10),

60000 / :8
2 X I2

2
\

Sf = i H )
= about 30 ooo,

'. 5-75 V ^sooox 5-52'

which shows that the dimensions are much too small. Again
assume the exterior side as 6 inches and the interior as 5 inches.

Then A = 11, r* = 5.08, and

6oooo/ i8
2 X i2

2
\

S<
= A 1 +

5000X5.08J
= about I5 7oa

As this is very near the required working stress, it appears that

these dimensions very nearly satisfy the imposed conditions.

In many instances it is possible to assume all the dimensions

of the column except one, and then after expressingA and r in

terms of this unknown quantity, to introduce them into (10) and

solve the problem by finding the root of the equation thus

formed. For example, let it be required to find the size of a

square wooden column with fixed ends and 24 feet long to sus-

tain a load of 100000 pounds with a factor of safety of 10.

Here let x be the unknown side ; then A
,
x* and r" = .

From (10),

,

24
2 X i

x' v
'

3 ooo x

By reduction this becomes,

8*
4 - i ooo*2 = 331 776,

the solution of which gives 16.6 inches for the side of the column.
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Prob. 101. Find the size of a square wooden column with fixed

ends and 12 feet in length to sustain a load of 100000 pounds
with a. factor of safety of 10. Find also its size for round ends.

Prob. 102. A hollow cylindrical cast iron column is to be de-

signed to carry a load of 90 ooo pounds. Its length is to be

12 feet, its ends flat or fixed, its exterior diameter 6 inches, and

the allowable unit-stress 15 ooo pounds per square inch. Find

the interior diameter.

ART. 61. EXPERIMENTS ON COLUMNS.

It is impossible to present here even a summary of the many

experiments that have been made to determine the laws of re-

sistance of columns. The interesting tests made by CHRISTIE

in 1883 for the Pencoyd Iron Works will however be briefly

described on account of their great value and completeness as

regards wrought iron struts, embracing angle, tee, beam, and

channel sections. See Transactions of the American Society

of Civil Engineers, April, 1884.

The ends of the struts were arranged in different methods ;

first flat ends between parallel plates to which the specimen was

in no way connected ; second, fixed ends, or ends rigidly

clamped ; third, hinged ends, or ends fitted to hemispherical

balls and sockets or cylindrical pins ; fourth, round ends, or ends

fitted to balls resting on flat plates.

The number of experiments was about 300, of which about

one-third were upon angles, and one-third upon tees. The

quality of the wrought iron was about as follows : elastic limit

32 ooo pounds per square inch. Ultimate tensile strength

49600 pounds per square inch, ultimate elongation 18 per cent

in 8 inches. The length of the specimens varied from 6 inches

up to 16 feet, and the ratio of length to least radius of gyra-

tion varied from 20 to 480. Each specimen was placed in a

Fairbanks' testing machine of 50 ooo pounds capacity and the

power applied by hand through a system of gearing to two
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rigidly parallel plates between which the specimen was placed

in a vertical position. The pressure or load was measured on

an ordinary scale beam, pivoted on knife edges and carrying

a moving weight which registered the pressure automatically.

At each increment of 5 OOO pounds, the lateral deflection of

the column was measured. The load was increased until failure

occurred.

The following are the combined average results of these care-

Length divided by
Least Radius of

Gyration.
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fully conducted experiments. The first column gives the values

/ P
of -,and the other columns the value of or the ultimate load

7* A-

per square inch of cross-section. From these results it will be

seen that when the strut is short there is no practical difference

in the strength of the four classes, and that when the strut is

long there is but little difference between those with flat and

hinged ends. The strength of the long columns with fixed

ends appears to be about 3^ times that of the round-ended

Prob. 103. Plot the above experiments, taking the values of

/ P
- as abscissas and those of -r as ordinates.
r A

ART. 62. ON THE THEORY OF COLUMNS.

It has been already remarked that the theory of columns is

in a very incomplete condition compared with that of beams.

A satisfactory formula for the resistance of columns should be

of such a nature that for a short block which fails by pure

crushing it would reduce to the equation P= ASC , while for a

long strut which fails by bending it would reduce to an expres-

sion like EULER'S. The formula of RANKINE conforms partly

to this requirement, but the fact that it is impossible to deter-

mine values of q of general applicability indicates that q is not

a constant, and that the reasoning by which it is deduced is

faulty. Nevertheless RANKINE'S formula applies so well to

columns of medium length that it is extensively employed
in this country in the manner illustrated in the preceding

articles.

For long columns EULER'S formula often represents fairly

the results of experiments, and since it contains / it may be

adapted to any form of cross-section. Thus I=Ar*, and,
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For round ends,

For fixed ends,
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EULER'S, and that the number q cannot be a true constant.

For this purpose consider the reasoning of Art. 56, and, as

there, take the total compressive unit-stress Sc on the concave

side as equal to the sum of the average unit-stress and the

flexural unit-stress, or,

From the fundamental formula (4) the value of .S is,

Now to express A in terms of /, consider the case of columns

with round ends which deflect into a sinusoid curve, whose

equation according to Art. 54 is,

y = A sin r.
. nx
T

The second derivative of y with respect to x is,

d*y An*
. nx

-r* ~w sm -T-.
dx* I I

For the middle of the column where x /, the curvature

hence is,

i _ d*y _ An 11

-TX*-~T-
But the investigation of Art. 33 shows also that SR = EC.

Hence,

(s }rsr _\2 Ar
*-^Ec- n*Ec~

'

The value of the total unit-stress on the concave side now is,
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and this is the same as (10), except that q has been replaced by

A-5
;-=: , which is not a constant since it varies with r. This

71 JC, A
p

expression is a quadratic with reference to 7, and by solution
^TL

are found the two values,

P
and

the first of which corresponds to the formula for short blocks

and the latter to EULER'S formula for columns with round ends.

Prob. 104. Prove that Ac' = r* for a column so deflected that

there is no stress on the convex side, c' being the distance from

that side to the neutral axis of the cross-section.

Prob. 105. Prove that an expression for the lateral deflection

SI* r*
is A g

---
,
and discuss its meaning when A = o. Com-

pute the numerical value of A for one of the examples of Art.

60, and interpret the result.
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Fig. 49-

CHAPTER VI.

TORSION, AND SHAFTS FOR TRANSMITTING POWER.

ART. 63. THE PHENOMENA OF TORSION.

Torsion occurs when applied forces tend to cause a twisting

of a body around an axis. Let one end of a horizontal shaft

be rigidly fixed and

let the free end have

a lever p attached at

right angles to its

axis. A weight P
hung at the end of

this lever will twist

the shaft so that fibers

such as ab, which were

originally horizontal, assume a spiral form ad like the strands

of a rope. Radial lines such as cb will also have moved through
a certain angle bed.

Experiments have proved, that if P be not so large as to

strain the material beyond its elastic limit, the angles bed and

bad are proportional to P and that on the removal of the stress

the lines cd and ad return to their original positions cb and ab.

The angle bed is evidently proportional to the length of the

shaft, while bad is independent of the length. If the elastic

limit be exceeded this proportionality does not hold, and if the

twisting be great enough the shaft will be ruptured. These

laws are but a particular case of the general axioms stated

in Art. 3.

The product Pp is the moment of the forceP with respect to

the axis of the shaft, p being the perpendicular distance from
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that axis to the line of direction of P, and is called the twisting

moment. Whatever be the number of forces acting at the end

of the shaft, their resulting twisting moment may always be

represented by a single product Pp.

A graphical representation of the phenomena of torsion may
be made as in Fig. I, the angles of torsion being taken as

abscissas and the twisting moments as ordinates. The curve

is then a straight line from the origin until the elastic limit of

the material is reached, when a rapid change occurs and it

soon becomes nearly parallel to the axis of abscissas. The

total angle of torsion, like the total ultimate elongation, serves

to compare the relative ductility of specimens.

Prob. 1 06. If a force of 80 pounds at 18 inches from the axis

twists a shaft 60, what force will produce the same result when

acting at 4 feet from the axis ?

Prob. 107. A shaft 2 feet long is twisted through an angle of

7 degrees by a force of 200 pounds acting at a distance of 6

inches from the axis. Through what angle will a shaft 4 feet

long be twisted by a force of 500 pounds acting at a distance

of 1 8 inches from the axis?

ART. 64. THE FUNDAMENTAL FORMULA FOR TORSION.

The stresses which occur between any two cross-sections of

a bar under torsion are similar to those of shearing, each sec-

tion tending to shear off from the one ad-

jacent to it. When equilibrium obtains the

external twisting moment is exactly bal-

anced by the sum of the moments of these

resisting internal stresses, or,

Resisting moment = twisting moment.

The law governing the distribution of these

F g- so- internal stresses is to be taken the same as

in beams, namely, that they vary directly as the distance from
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the axis, provided that the elastic limit of the material be not

exceeded.

If Pbe the force acting at a distance/ from the axis about

which the twisting takes place, the value of the twisting moment

is Pp. To find the resisting moment, let c be the distance from

the axis to the remotest part of the cross-section where the

unit-shear is 5S . Then since the stresses vary as their distances

from the axis,

- = unit-stress at a unit's distance from axis,

= unit-stress at a distance z from axis,
c

- = total stress on an elementary area a,

= moment of this stress with respect to axis,

a *
2 = internal resisting moment.

This may be written 2asf. But 2as? is the polar moment

of inertia of the cross-section with respect to the axis, and may
be denoted by /. Therefore,

which is the fundamental formula for torsion.

The analogy of formula (11) with formula (4) for the flexure

of beams will be noted. Pp, the twisting moment, is often the

resultant of several forces, and might have been expressed by
a single letter like the M in (4). By means of (11) a shaft

subjected to a given moment may be investigated, or the

proper size be determined for a shaft to resist given forces.

Prob. 108. Three forces of 120, 90, and 70 pounds act at

distances of 6, n, and 8 inches from the axis and at different



138 TORSION AND SHAFTS. Cli. VI.

distances from the end of a shaft, the direction of rotation of

the second force being opposite to that of the others. Find

the three values of the twisting moment Pp.

Prob. 109. A circular shaft is subjected to a maximum

shearing unit-stress of 2 ooo pounds when twisted by a force of

90 pounds at a distance of 27 inches from the center. What
unit-stress will be produced in the same shaft by two forces of

40 pounds, one acting at 21 and the other at 36 inches from

the center?

ART. 65. POLAR MOMENTS OF INERTIA.

The polar moment of inertia for simple figures is readily

found by the help of the calculus, as explained in works on

elementary mechanics. It is also a fundamental principle

that,

where / is the polar moment of inertia, 7, the least and 7
2 the

greatest rectangular moment of inertia about two axes passing

through the center. The following are values ofJ for some
of the most common cases.

For a circle with a diameter d, J -
,

For a square whose side is d, J =. -?-,

For a rectangle with sides b and d, J = --
-j
--

.

The value of c in all cases is the distance from the axis

about which the twisting occurs, usually the center of figure

of the cross-section, to the remotest part of the cross-section.

Thus,

For a circle with diameter d, c ^d,

For a square whose side is d, c = d -v/f,

For a rectangle with sides b and d, c = % -\fb* -f- d^.
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It is rare in practice that formulas for torsion are needed for

any cross-sections except squares and circles.

Prob. 1 10. Find the values of J and c for an equilateral tri-

angle whose side is d.

Prob. in. Find, from the data in Art. 30, the values of J
and c for a light 6 inch / section.

ART. 66. THE CONSTANTS OF TORSION.

The constant 5, computed from experiments on the rupture

of shafts by means of formula (11) may be called the modulus

of torsion, in analogy with the modulus of rupture as com

puted from (4). The values thus found agree closely with the

ultimate shearing unit-stress given in Art. 7, viz.,

For timber, Ss
= 2 ooo pounds per square inch,

For cast iron, .Ss = 25 ooo pounds per square inch,

For wrought iron, 5S
= 50 ooo pounds per square inch,

For steel, J>s = 75 ooo pounds per square inch.

By the use of these average values it is hence easy to compute
from (n) the load P acting at the distance / which will cause

the rupture of a given shaft.

The coefficient of elasticity for shearing may be computed
from experiments on torsion in the following manner. Let a

circular shaft whose length is / and diameter d be twisted

through an arc 6 by the twisting moment Pp. Here a point

on the circumference of one end is twisted relative to a corre-

sponding point on the other end through the arc B or through
the distance %6d, so that the detrusion per unit of length is

_w
I'-

From the fundamental definition of the coefficient of elasticity

E as given in (2),

p _ _ 2Ssl

s~ 8d'
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and inserting for Ss its value from (11), there results,

from which E can be computed when all the quantities in the

second member have been determined by experiment, pro-

vided that the elastic limit of the material be not exceeded.

The numerical value of must here be expressed in terms of

the same unit as n.

Prob. 112. What force P acting at the end of a lever 24

inches long will twist asunder a steel shaft 1.4 inches in

diameter?

Prob. 113. An iron shaft 5 feet long and 2 inches in diam-

eter is twisted through an angle of 7 degrees by a force of

5 ooo pounds acting at 6 inches from the center, and on the re-

moval of the force springs back to its original position. Find

the value of E for shearing.

ART. 67. SHAFTS FOR THE TRANSMISSION OF POWER.

Work is the product of a resistance by the distance through
which it acts, and is usually measured in foot-pounds. A horse-

power is 33000 foot-pounds of work done in one minute. It

is required to determine the relation between the horse-power

H transmitted by a shaft and the greatest internal shearing

unit-stress 5"s produced in it.

Let a shaft making n revolutions per minute transmit H
horse-power .The work may be applied by a belt from the motor

to a pulley on the shaft, then, by virtue of the elasticity and re-

sistance of the material of the shaft, it is carried through other

pulleys and belts to the working machines. In doing this the

shaft is strained and twisted, and evidently Ss increases with H.

LetP be the resistance acting at the circumference of the pulley

and/ the radius of the pulley. In making one revolution the
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force P acts through the distance 2np and performs the work

27tpP, and in n revolutions it performs the work 27tpPn. Then

if P be in pounds and p in inches, the imparted horse-power is,

H_ 2npPn

33 ooo X 12

The twisting moment Pp in this expression may be expressed,

as in formula (11), by the resisting moment -^
. Hence the

equation becomes,

(12) H=J^L.
198 oooc

This is the formula for the discussion of shafts for the trans-

mission of power, and in itJ and c must be taken in inches and

5S in pounds per square inch, while n is the number of revolu-

tions per minute.

Prob. 114. A wooden shaft 6 inches square breaks when

making 40 revolutions per minute. Find the horse-power then

probably transmitted.

ART. 68. ROUND SHAFTS.

For round shafts of diameter d, the values of /and c are to

be taken from Art. 65 and inserted in the last equation, giving,

or *= 6

The first of these may be used for investigating the strength
of a given shaft when transmitting a certain number of horse-

power with a known velocity. The computed values of vSs ,

compared with the ultimate values in Art. 67, will indicate the

degree of security of the shaft. Here d must be taken in

inches and Ss will be in pounds per square inch.

The second equation may be used for determining the di-

ameter of a shaft to transmit a given horse-power with a given
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number of revolutions per minute. Here a safe allowable

value must be assumed for S, in pounds per square inch, and

then d will be found in inches. This equation shows that the

diameter of a shaft varies directly as the cube root of the

transmitted horse-power and inversely as the cube root of its

velocity.

Prob. 115. Find the factor of safety for a wrought iron shaft

2\ inches in diameter when transmitting 25 horse-power while

making 100 revolutions per minute.

Prob. 116. Find the diameter of a wrought iron shaft to

transmit 90 horse-power with a factor of safety of 8 when mak-

ing 250 revolutions per minute, and also when making 100

revolutions per minute.

ART. 69. SQUARE SHAFTS.

For a square shaft whose side is d the values ofJ and c are

to be taken from Art. 65 and inserted in (12), giving,

S, = 367500^, or rf

These are the same as for round shafts except in the numerical

constants, and are to be used in the same manner, the first to

investigate an existing shaft and the second to find the diameter

for one proposed.

When a shaft is used under practical conditions for the trans-

mission of power it usually happens that it is subject to flexural

stresses due to loads as well as to stresses of torsion. Thus a

square shaft carrying a water wheel acts like a beam under the

weight of the wheel and also is subject to the twisting moment.

As the above formulas only include the effect of the latter it is

clear, if the transverse load is considerable, that the unit-stress

.Sj should be taken small so as to allow an ample margin of

security. In Art. 76 the effect of transverse loads on a shaft

will be taken into account.
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Prob. 117. Find the factor of safety of a wooden shaft 12

inches square when transmitting 16 horse-power at 40 revolu-

tions per minute ; also when making 10 revolutions per minute.

Prob. 1 1 8. Find the size of a square wooden shaft for a water

wheel which is to transmit 8 horse-power at 20 revolutions per

minute with a factor of safety of 15.

ART. 70. MISCELLANEOUS EXERCISES.

Exercise 8. Make experiments to verify the phenomena of

torsion stated in Art. 63. Show by your experiments that the

strength of a round shaft varies directly as the cube of its

diameter, and is independent of its length.

Exercise 9. Make a theoretical investigation to ascertain if

the strength of a square shaft can be increased by cutting off

material from the corners. If such is found to be the case

write an essay explaining the reasoning, the computations and

the conclusion.

Exercise 10. Go to a testing room and inspect THURSTON'S

testing machine for torsion. Ascertain the dimensions and

kind of specimens tested thereon. Explain with sketches the

construction of the machine, the method of its use, and the

torsion diagrams. State how the quality of the specimens is

inferred from the torsion diagrams.

Prob. 1 19. Compare the strength of a square shaft with that

of a circular shaft of equal area.

Prob. 1 20. Jones & Laughlins give, for computing the diam-

eters of shafts, the formulas,

. 3/62.5/i==V"v and
n y n

the first for ordinary turned wrought iron shafts, and the sec-

ond for cold rolled wrought iron shafts. What working unit-

stresses do these imply ?
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CHAPTER VII.

COMBINED STRESSES.

ART. 71. CASES OF COMBINED STRESSES.

The three kinds of simple stress are tension, compression,
and shear, or, in other words, the numerical investigation of

bodies under stress includes only the unit-stresses St ,
Sc ,

and 5S .

Transverse or flexural stress was investigated in Chapter III

by resolving the internal stresses into tension, compression, and

shear. Torsional stress is merely a particular case of shear.

Tension and compression are similar in character and differ

only in sign or direction. Hence their combination is effected

by algebraic addition. Thus if P be a tensile stress and F a

compressive stress applied to the same bar at the same time

the resultant stress is PP' which may be either tensile or

compressive.

Tension and shear, or compression and shear, are often com-

bined, as internally in the case of beams and externally under

many circumstances,

Tension and flexure are combined when loads are placed upon
a bar under tension. This case and that of compression and

flexure are of frequent occurrence, and their investigation is of

much practical importance.

Flexure and torsion are combined whenever horizontal shafts

for the transmission of power are loaded with pulleys and belts,

and, as will be seen, the effect of the flexure is sensibly to

modify the formulas of the last chapter. Compression, flexure,

and torsion may occur in the case of vertical shafts.
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The internal stresses in a body produced by applied forces

are usually of a complex character. Even in a case of simple

tension there are shearing stresses in all directions except those

perpendicular and parallel to the line of tension, as was shown

in Art. 7. But whatever be the nature of the internal stresses

they may be investigated by resolving them into tension, com-

pression, and shear.

Prob. 121. A pulls 30 pounds at one end of a rope, and B,

C and D each pull 10 pounds at the other end. What is the

tensile stress in the rope ?

ART. 72. STRESSES DUE TO TEMPERATURE.

If a bar be unstrained it expands when the temperature rises

and contracts when the temperature falls. But if the bar be

under stress, so that the change of length cannot occur, an ad-

ditional unit-stress must be produced which will be equivalent

to the unit- stress that would cause the same change of length

in the unstrained bar. Thus if a rise of temperature elongates

a bar of length unity the amount s when free from stress, it

will cause the unit-stress S = sE (see Art. 4) when the bar is

prevented from expanding by external forces.

Let / be the length of the bar, a its coefficient of linear ex-

pansion for a change of one degree, and A the change of length

due to the rise or fall of t degrees. Then,

X = atl.

and the unit-deformation s is,

A
s = . = at.

The unit-stress produced by the change in temperature hence is,

5 = atE

which is seen to be independent of the length of the bar. The
total stress on the bar is then AS.
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The following are average values of the coefficients of linear

expansion for a change in temperature of one degree Fahren-

heit.

For brick and stone, a = O.OOO oo 50,

For cast iron, a = o.ooo oo 62,

For wrought iron, a = o.ooo oo 67,

For steel, a = o.ooo oo 65.

As an example consider a wrought iron tie rod 20 feet in

length and 2 inches in diameter which is screwed up to a ten-

sion of 9 ooo pounds in order to tie together two walls of a

building. Let it be required to find the stress in the rod when

the temperature falls 10 F. Here,

5 = o.ooooo 67 X 10 X 25 ooo ooo = i 675 pounds.

The total tension in the rod now is,

9 ooo -f 3.14 X i 675 = 14 ooo pounds.

Should the temperature rise 10 the tension in the rod would

become,
9 ooo 3.14 X i 675 = 4000 pounds.

In all cases the stresses caused by temperature are added or

subtracted to the tensile or compressive stresses already

existing.

Prob. 122. A cast iron bar is confined between two immovable

walls. What urtit-stress will be produced by a rise of 40 in

temperature ?

ART. 73. COMBINED TENSION AND FLEXURE.

Consider a beam in which the flexure produces a unit-stress

5 at the fiber on the tensile side most remote from the neutral

axis. Let a tensile stress P be then applied to the ends of the

bar uniformly distributed over the cross-section A. The ten-

p
sile unit-stress at the neutral surface is then - and all the

A

longitudinal stresses due to the flexure are increased by this
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p
amount. The maximum tensile unit-stress is then -\- S in

A
which 5 is to be found from formula (4).

In designing a beam under combined tension and flexure

p
the dimensions must be so chosen that -f- 5 shall not exceed

A
the proper allowable working unit-stress. For instance, let it

be required to find the size of a square wooden beam of 12

feet span to hold a load of 300 pounds at the middle while

under a longitudinal stress of 2 ooo pounds, so that the maxi-

mum tensile unit-stress may be about I ooo pounds per square

inch. Let d be the side of the square. From formula (4),

c _ 6M_ 6 X 150 X 72=
^'

~
~d^~

Then from the conditions of the problem,

2 ooo . 64 800___+ __. = I ooo,

from which results the cubic equation,

d* 2^=64.8,

whose solution gives for d the value 4.25 inches.

In investigating a beam under combined tension and flexure

p
the maximum value of -f- 5 is to be computed, and the

A
factor of safety found by comparing it with the ultimate ten-

sile strength of the material.

Prob. 123. A heavy 1 2-inch I beam of 6 feet span carries a

uniform load of 200 pounds per linear foot, besides its own

weight, and is subjected to a longitudinal tension of 80000

pounds. Find the factor of safety of the beam.

Prob. 124. What I beam of 12 feet span is required to carry
a uniform load of 200 pounds per linear foot when subjected
to a tension of 50 ooo pounds, the maximum tensile stress at

the dangerous section to be 9 ooo pounds per square inch ?
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ART. 74. COMBINED COMPRESSION AND FLEXURE.

Consider a beam in which the flexure produces a unit-stress

5 in the fiber on the compressive side most remote from the

neutral axis. Let a compressive stress P be applied in the direc-

tion of its length uniformly over the cross-section A. Then at

p
the neutral surface the unit-stress is - and at the remotest

A
p

fiber it is -}- S. The discussion of this case is hence exactly
yi

similar to that of the last article. If the beam is short the

total working unit-stress is to be taken as for a short prism ;

if long it should be derived from RANKINE'S formula for

columns.

The method of investigation explained in this and the pre-

ceding article is the one ordinarily used in practice on account

of the complexity of the formulas which result from the strict

mathematical determination of the moments of the applied

forces. Although not exact the method closely approximates

to the truth, giving values of the stresses a little too large for

the case of tension and a little too small for the case of

compression.

A rafter of a roof is a case of combined compression and

flexure. Let b be its width,

d its depth, / the length,

w the load per linear unit,

and the angle of inclina-

tion. To find the horizon-

tal reaction H the center

of moments is to be taken
Flg< 5I< at the lower end, and

,, , . , , I COS , WlH . / sin = ivl .
,

whence H = cot 0.
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For any section whose distance from the upper end is x, the

flexural unit-stress now is from (4),

-. _ 6M_ 6(Hx sin \wx* cos 0)
W*

~
bd*

and the uniform compressive unit-stress is,

c _ H cos -f- wx sin
S<~ ~bd~

The total compressive unit-stress on the upper fiber hence is,

c c I c 3^ cos
(

, ,.
,

wtcot cos0 w* sin&=+= ^ (/* ___-+__
This can be shown to be a maximum when

and substituting this, the maximum unit-stress is,

_ 32f/
a
cos w/cosec wsin0tan0

4^*
"
2^ ~~i~2T~

which formula may be used to investigate or to design rafters

subject to uniform loads.

In any inclined rafter let P denote all the load above a sec-

tion distant x from the upper end. Then reasoning as before

the greatest unit-stress for that section is found to be,

c _ Me P sin H cos
S*~T ~~A~ ~A'

from which S* may be computed for any given case.

Prob. 125. A roof with two equal rafters is 40 feet in span
and 15 feet in height. The wooden rafters are 4 inches wide

and each carries a load of 450 pounds at the center. Find

the depth of the rafter so that Sm may be 700 pounds pet

square inch.

Prob. 126. A wooden beam 10 inches wide and 8 feet long
carries a uniform load of 500 pounds per linear foot and is sub-

jected to a longitudinal compression of 40000 pounds. Find

the depth of the beam so that the maximum working unit-stress

may be about 800 pounds per square inch.
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ART. 75. SHEAR COMBINED WITH TENSION OR COMPRESSION.

Let a bar whose cross-section is A be subjected to the longi-

tudinal tension or compression P and at the same time to a

shear fat right angles to its length. The longitudinal unit-

p
stress is which may be denoted by/, and the shearing unit-

A

stress is - which may be denoted by v. It is required to find
A

the maximum unit-stresses produced by the combination of /
and v. In the following demonstration Pwill be regarded as

a tensile force, although the reasoning and conclusions apply

equally well when it is compressive.

Consider an elementary cujpic particle with edges one unit

in length acted upon by the horizontal tensile force / and /,

and by the vertical shear v and v, as

shown in Fig. 52. These forces are not in

equilibrium unless a horizontal couple be

applied as in the figure, each of whose

forces is equal to v. Therefore at every

Fig. s*. point of a body under vertical shear there

exists ,a horizontal shear, and the horizontal shearing unit-

stress is equal to the vertical shearing unit-stress.

Let a parallelopipedal element have the length dm, the

height dn, and a width of unity. The tensile ioro.zp.dn tends

to pull it apart longitudinally.

The vertical shear vdn tends to *\
"*'

cause rotation and this is resisted, <?

as shown above, by the horizon- ^ 5re "*-

tal shear vdm. These forces ^^~ -^-"v.dm

may be resolved into rectangular v.dn\
**<&

components parallel and perpen-
Fl*' 53 '

dicular to the diagonal ds, as shown in Fig. 53. The compo-
nents parallel to the diagonal form a shearing force sdz, and
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those perpendicular to it a tensile force tdz, s being the shear-

ing and t the tensile unit-stresses. Let be the angle between

dz and dm. The problem is first to state expressions for sdz

and tdz in terms of 0, and then to determine the value of 0,

or the ratio of dm to dn, which gives the maximum values

of s and t.

By simple resolution of forces,

sdz = pdn cos -|- vdm cos vdn sin 0,

tdz = pdn sin -j- W?# sin -\- vdn cos 0.

Divide each of these by dz, for -3 put its value sin and for

-T- its value cos 0. Then the equations take the form,

s = p sin cos -f- ^(cos
2

sin" 0),

t p sin
8

-j- 2z/ sin cos 0.

These may be written,

s = \p sin 20 + v cos 20,

? = %p(i cos 20) -j- v sin 20.

By placing the first derivative of each of these equal to zero it

is found that,

P
s is a maximum when tan 20 = ,

2V

2V
t is a maximum when tan 20 = -- .

P

Expressing sin 20 and cos 20 in terms of tan 20 and inserting

them in the above the following values result :

max. / =

These formulas apply to the discussion of the internal stresses

in beams, as well as to combined longitudinal stress and vertical

shear directly applied by external forces. If p is tension t is
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tension, if p is compression t is also compression. If when/ is

tension the negative sign be used before the radical, the re-

sultant value of t is the maximum compressive unit-stress.

Prob. 127. A bolt f-inch in diameter is subjected to a tension

of 2 ooo pounds and at the same time to a cross shear of 3 ooo

pounds. Find the maximum tensile and shearing unit-stresses

and the directions they make with the axis of the bolt.

ART. 76. COMBINED FLEXURE AND TORSION.

This case occurs when a shaft for the transmission of power
is loaded with weights. Let 5 be the greatest flexural unit-

stress computed from (4) and S, the torsional shearing unit-

stress computed^from (12) or by the special equations of Arts.

67 and 68. Then, according to the last article, the resultant

maximum unit-stresses are,

max. ten. or comp. / =
max. shear s =

For wrought iron or steel it is usually necessary to regard only

the first of these unit-stresses, but for timber the second should

also be kept in view.

For example, let it be required to find the factor of safety of

a wrought iron shaft 3 inches in diameter and 12 feet between

bearings, which transmits 40 horse-power while making 120

revolutions per minute, and upon which a load of. 800 pounds
is brought by a belt and pulley at the middle. Taking the

shaft as fixed over the bearings the flexural unit-stress is,

S= -7,
=

5 400 pounds per square inch.
Ttd

From Art. 68 the torsional unit-stress is,

TT

Ss
= 321 ooo --T-3 = 4 ooo pounds per square inch.
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The maximum tensile and compressive unit-stress now is,

t 2 700 -f -/4 ooo
2

-f 2 700*
= 7 600 pounds per square in.

and the factor of safety is hence over 7.

As a second example, let it be required to find the size of

a square wooden shaft for a water-wheel weighing 3 ooo pounds
which transmits 8 horse-power while making 20 revolutions per

minute. The length of the shaft is 16 feet, and one-third of

the weight is concentrated at the center and the remainder is

equally divided between two points, each 6 feet from the center.

Here the greatest flexural unit-stress is,

_ 6(1 500 X 96 - i ooo X 72} _ 432000
~^~ ~~d^~'

and from Art. 69 the torsional unit-stress is,

_ 267 500 X 8 _ 107000^~ 2oJ 3 d*
"'

From the formula of the last Article the combined tensile or

compressive unit-stress is,

_ 470400
~~d*~'

Now if the working value of t be taken at 600 pounds per

square inch the value of d will be about 9 inches. From for-

mula (13) also

_ 254400
d*

"'

and if the working value of s be taken at 150, the value of d is

found to be about 12 inches. The latter value should hence

be chosen for the size of the shaft.

By similar reasoning it may be proved that the formula for

finding the diameter of a round iron shaft is,

i6M
,

16 M* 402 500 ooo//
8

=
7~+ TA / f H 2nt ^

t \] n 1

n*
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where M is the maximum bending moment of the transverse

forces in pound-inches, H the number of transmitted horse-

power, n the number of revolutions per minute, and / the

safe allowable tensile or compressive working strength of the

material.

Prob. 128. Find the factor of safety for the data of Prob.

115 when the shaft is in bearings 12 feet apart and carries a

load of 200 pounds at the middle.

ART. 77. COMBINED COMPRESSION AND TORSION.

In the case of a vertical shaft the torsional unit-stress Sj com-

bines with the direct compressive stress due to the weights

upon the shaft, and produces a resultant compression t and

shear s. From formulas (13) the combined unit-stresses are,

The use of these is the same as those of the last Article, Ss

being found from the formulas of Chapter VI, while Sc is com-

puted from formula (i) if the length of the shaft be less than

ten times its diameter and from (10) for greater lengths.

In order to prevent vibration and flexure it is usual to place

bearings at frequent intervals on a vertical shaft so that prob-

ably the use of formula (10) will rarely be required, particularly

if / be taken at a low value. For a round shaft the expression

for t becomes,

_ 4/> I T77
7

i6/^~~
Ttd* ~*~

\ ri*d* 7t*d*
'

in which P is the load. From this the diameter d may be found

when t and the other data are given.

Prob. 129. A vertical shaft, weighing with its loads 6000
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pounds, is subjected to a twisting moment by a force of 300

pounds acting at a distance of 4 feet from its center. If the

shaft is wrought iron, 4 feet long and 2 inches in diameter, find

its factor of safety.

Prob. 130. Find the diameter of a short vertical steel shaft

to carry loads amounting to 6 ooo pounds when twisted by a

force of 300 pounds acting at a distance of 4 feet from the

center, taking the unit-stress against compression as 10 ooo and

against shearing as 7 ooo pounds per square inch.

ART. 78. HORIZONTAL SHEAR IN BEAMS.

The common theory of flexure as presented in Chapters III

and IV considers that the internal stresses at any section are

resolved into their horizontal and vertical components, the

former producing longitudinal tension and compression and

the latter a transverse shear, and that these act independently
of each other. Formula (3) supposes further that the vertical

shear is uniformly distributed over the cross-section of the

beam. A closer analysis will show that a horizontal shear

exists also and that this, together with the vertical shear,

varies in intensity from the neutral surface to the upper and

lower sides of the beam. It is well known that a pile of boards

which acts like a beam deflects more than a solid timber of the

same depth, and this is largely due to the lack of horizontal

resistance between the layers. The common theory of flexure

in neglecting the horizontal shear generally errs on the side of

safety. In a few experiments however beams have been known

to crack along the neutral surface and it is hence desirable to

investigate the effect of horizontal shear in tending to cause

rupture of that kind. That a horizontal shear exists simulta-

neously with the vertical shear is evident from the considera-

tions in Art. 75.

Let Fig. 54 represent a portion of a bent beam of uniform
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section. Let a rectangular notch nmpq be imagined to be cut

into it, and let forces be applied to it to preserve the equilib-

rium. Let H be the sum of all the horizontal components of

these forces act-

i%JP
j
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The horizontal shear therefore is expressed by

Now since the distance mq is dx, the value of M1 M is dM.

Also if Sh be the horizontal shearing unit-stress upon the area

bdx the value of H' H is Shbdx. Hence,

dM

Again from Art. 45 it is plain that is the vertical shear V

at the section under consideration. Therefore,

(H) Sk = --
lo

is the formula for the horizontal shearing unit-stress at any

point of any section of the beam.

This expression shows that the horizontal shearing unit-stress

is greatest at the supports, and zero at the dangerous section

where V is zero. The summation expression is the statical

moment of the area mm'nn' with reference to the neutral axis
;

it is zero when y = c, and a maximum when y = o. Hence

the longitudinal unit-shear is zero at the upper and lower sides

of the beam and is a maximum at the neutral surface. The

formula for the maximum horizontal shearing unit-stress at any
section therefore is,

Here / is the moment of inertia of the whole cross-section with

reference to the neutral axis (Art. 23), b is the width of the

beam along the neutral surface, and "2? ay is the statical mo-

ment of the area of the part of the cross-section on one side of

the neutral axis. Let A
l
be the area of the cross-section on
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one side of the neutral axis and c
v
the distance of its center of

gravity from that axis; then 2c

ay = A
1
c

l ,
and the formula

becomes,

, v c VA lCl

(14)' s*=-7r>
which gives the maximum shearing unit-stress, both horizontal

and vertical, at the neutral surface. The mean unit-stress given

by (3) is always less than this maximum.

For a rectangular beam of breadth b and depth d, the value

. bd* bd d bd*
of / is-

,
and A

l
c

l
= .

- = . Then,

-
~2bd'

By inserting in this the value of V for any section the corre-

sponding value of Ss at the neutral surface is found. In this

particular instance it is seen that the approximate formula (3)

gives values of St which are 33 per cent lower than the true

maximum value.

Prob. 131. In the Journal of the Franklin Institute for Feb-

ruary, 1883, is detailed an experiment on a spruce joist 3-f X 12

inches and 14 feet long, which broke by tension at the middle

and afterwards by shearing along the neutral axis at the end

when loaded at the middle with 12 545 pounds. Find the ten-

sile and shearing unit-stresses.

ART. 79. MAXIMUM INTERNAL STRESSES IN BEAMS.

From the last Article it is evident that at every point of a

beam there exists a horizontal unit-shear of the intensity S;t
and

also a vertical unit-shear of the same intensity, whose value is

given by (14). At every point there also exists a longitudinal

tension or compression which may be computed from (4) with

the aid of the principle that these stresses vary directly as their
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distances from the neutral axis. Let v denote the unit-shear

thus determined and p the tensile or compressive unit-stress.

Then from Art. 75 the maximum unit-shear at that point is,

s = jj + i/,

and it makes an angle with the neutral surface such that,

tan 20 =-^-.
2V

Also the maximum tensile or compressive unit-stress at that

point is,

and it makes an angle 6 with the neutral surface such that,

tan 20=- .

P
From these formulas the lines of direction of the maximum
stresses may be traced throughout the beam.

For the maximum shear v is greatest and p is zero at the

neutral surface, while v is zero and p is greatest at the upper
and lower surfaces. Hence for the neutral surface is o, it

increases with p, and becomes 45 at the upper and lower

surfaces.

For the maximum tension / is greatest and equal to / on

the convex side where v = o and 6 = o. As the neutral sur-

face is approached v increases, / decreases, and 6 increases.

At the neutral surface v is greatest, p is zero, and 45.
Here the maximum tension and compression are each equal

to v.

For the maximum compression in like manner 8 is o at the

concave surface and 45 at the neutral surface. The lines of

maximum tension if produced beyond the neutral surface would

evidently cut those of maximum compression at right angles

and be vertical at the concave surface.
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The following figure is an attempt to represent the lines

which indicate the directions of the maximum- unit-stress in a

beam. The full lines

above the neutral

surface are those of

maximum compres-

sion, while those be-

low are maximum
tension. The broken

lines are those of

Fig - 55> maximum shear. On

any line the intensity of stress varies with the inclination, being

greatest where the line is horizontal and least where its inclina-

tion is 45. The lines of maximum shear cut those of maxi-

mum tension and compression at angles of 45. The lines of

maximum tension above the neutral surface and those of maxi-

mum compression below it are not shown ;
if drawn they would

cut the others at right angles and become vertical at the upper

and lower edges of the beam.

It appears from the investigation that the common theory of

flexure gives the horizontal unit-stress correctly at the dan-

gerous section of a simple beam where the vertical shear is

zero. At other sections the stress 5" as computed from (4) is

correct for the remotest fiber, but for other fibers the unit-stress

/ is greater. It is hence seen that the main practical value of

the theory of internal stress is in showing that the intensity of

the shear varies throughout the cross-section of the beam. For

a restrained beam, where the vertical shear suddenly changes

sign at the dangerous section, the common theory gives the

horizontal stress 5 correctly for the remotest fiber only, and

it might be possible in some forms of cross-sections for the

maximum stress t to be slightly greater than 6" for a fiber

nearer to the neutral surface. All that has here been deduced
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justifies the validity of the common theory of flexure as a

correct guide in the practical design and investigation of

beams.

Prob. 132. A joist fixed at both ends is 3 X 12 inches and

12 feet long, and is strained by a load at the middle, so that

the value of 5 as computed from (4) is 4 ooo pounds per square
inch. Find the value of t for points over the support distant

3, 4, and 5 inches from the neutral surface.

Prob. 133. Show, for a point between the neutral surface and

the convex side, that there exists a maximum compression as

well as a maximum tension. Deduce an expression for the

value of this maximum compression and its direction. Draw
a figure showing the curves over the entire beam for both these

stresses.
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CHAPTER VIII.

APPENDIX AND TABLES.

ART. 80. SUDDEN LOADS AND SHOCKS.

When a tensile load is gradually applied to a bar its intensity

increases slowly from o up to the final value P, and the stress

in the bar at any instant is equal to the tensile force existing

at that instant
;
the elongation of the bar increases propor-

tionally to the stress from o up to the final limit A, if the

elastic limit is not exceeded. The work done upon the bar by
the external force is then equal to its mean intensity \P multi-

plied by the distance A, or |/>A ;
the work of the molecular

forces is also equal to this same quantity />A.

A load P is said to be suddenly applied when its intensity is

the same from the beginning to the end of the elongation.

The stress in the bar, however, increases from o up to a limit Q.

Let y be the elongation produced by the sudden load P\ then

the work of this external force is Py. If the stresses are

within the elastic limit so that they increase proportionally to

the elongation, the mean stress is \Q and the work of the re-

sisting forces is \Qy. Hence, as these two works must be equal,

\Qy = Py or Q = 2P.

Now let A be the elongation due to the load P when gradually

applied, then by law (B),

Therefore is established the following important theoretical law,

A suddenly applied load produces double the stress and

double the deformation caused by the same load when

gradually applied.
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This law is only true when all the stresses are within the elastic

limit of the material. The sudden load P thus causes the end

of the bar to move from o to 2\ when the stress becomes 2.P

the resultant force tending to move the end is P 2P or P
and hence the end moves backward, until after a series of

oscillations it comes to rest with the elongation A due to the

static stress P. The time of this oscillation, as also the velocity

of the end of the bar at any instant, can be computed by the

principles of dynamics.

A shock is said to be produced upon the end of a bar when

a load P falls from a height h upon it. Here the stress in the

bar will increase from o up to a certain limit Q and the defor-

mation from o up to a certain limit y. If the elastic limit of

the material be not exceeded, the stress at any instant will be

proportional to the deformation, so that the work of the in-

ternal stresses will be ^Qy, The work done by the exterior force

P in the same time is P(Ji -|- y). Hence

But if A be the deformation due to a static load P, the law of

proportionality gives

Q_l
p ~A-

Combining these two equations there is found,

If k = O these formulas reduce to Q = 2P and y = 2A, which

is the case of a suddenly applied load
;

if h = 4j, they become

Q = 4P and y = 4^ ;
if h = i2A they give Q = 6P and y = 6A.

Since A is a small quantity for any metallic bar, it follows that

a load P dropping from a moderate height may produce great
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stresses and deformations. Experiments made upon springs

show that the theory here presented is correct, provided the

elastic limit of the material is not surpassed by the stress Q.

The effect of loads applied with shock is therefore to cause

stresses and deformations greatly exceeding those produced by
the same static loads, so that the elastic limit may perhaps be

often exceeded. Moreover the rapid oscillations and the rapid

variations in the stresses cause a change in molecular structure

which impairs the elasticity of the material. Generally it will

be found that the appearance of a fracture of a bar which has

been subject to shocks is of a crystalline nature, whereas the

same material, if ruptured under a gradually increasing stress,

would exhibit a tough fibrous structure. Shocks which produce

stresses above the elastic limit cause the material to become

stiff and brittle, and hence it is that the working unit-stresses

based upon static loads should be taken very low (Art. 8).

Prob. 134. In an experiment upon a spring a weight of 14.79
ounces produced an elongation of 0.42 inches, but when

dropped from a height of 7.72 inches it produced a stress of 102.3

ounces and an elongation of 2.90 inches. Compare theory with

experiment.

ART. 81. THE RESILIENCE OF MATERIALS.

When an applied stress causes a deformation work is done.

Thus if a tensile stress P be applied by increments to a bar,

so that the stress gradually increases from o to the value P, the

work done is the product of the average stress by the total

elongation A. This product is termed the resilience of the bar.

If the stress does not exceed the elastic limit of the material

the average stress is %P, and the work or resilience is />A. If

the cross-section of the bar be A and its length /, the unit-stress

is - or S, and the unit-strain is or s, so that the work done
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on each unit of length of the bar per unit of cross-section is

%Ss. From formula (2) the value of s is
^,

and accordingly this

work may be written,

(16) K= 1

-^.

If 6" be the unit-stress at the elastic limit, the quantity K is

called the modulus of resilience of the material.

Resilience is often regarded as a measure of the capacity of

a material to withstand shock, for if a shock or sudden stress

be produced by a falling body, its intensity depends upon the

weight and the height through which it has fallen, that is, upon
its kinetic energy or work. Hence the higher the resilience of a

material the greater is its capacity to endure work that may be

performed upon it. The modulus of resilience is a measure of

this capacity within the elastic limit only.

The following are values of the modulus of resilience as

computed from (16) by the use of the average constants given
in Art. 5.

For timber, K 3.0 inch-pounds,

For cast iron, K= 1.2 inch-pounds,

For wrought iron, K= 12.5 inch-pounds,
For steel, K = 41.7 inch-pounds.

The ultimate resilience of materials cannot be expressed by a

rational formula, because the law of increase of elongation be-

yond the elastic limit is unknown. In Fig. I the ultimate

resilience is indicated by the area between any curve and the

axis of abscissas, since that area has the same value as the total

work performed in producing rupture. For timber and cast

iron the ratio of these areas is about the same as that of the

values of K, but for wrought iron and steel the areas are nearly

equal.

Prob. 135. What horse-power engine is required to strain 125
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times per minute a bar of wrought iron 2 inches in diameter

and 1 8 feet long, from o up to one-half its elastic limit?

ART. 82. THE FATIGUE OF MATERIALS.

The ultimate strength Su is usually understood to be that

steady unit-stress which causes rupture at one application.

Experience and experiments, however, teach that if a unit-

stress somewhat less than Su be applied a sufficient number of

times to a bar rupture will be caused. The experiments of

W6HLER have been of great value in establishing the laws

which govern the rupture of metals under repeated applica-

tions of stress. For instance, he found that the rupture of a

bar of wrought iron by tension was caused in the following

different ways.

By 800 applications of 52 800 pounds per square inch.

By 107 ooo applications of 48 400 pounds per square inch.

By 450 OOO applications of 39 ooo pounds per square inch.

By 10 140 ooo applications of 35 ooo pounds per square inch.

The range of stress in each of these applications was from o to

the designated number of pounds per square inch. Here it is

seen that the breaking stress decreases as the number of appli-

cations increase. In other experiments where the initial stress

was not o, but a permanent value S, the same law was seen to

hold good. It was further observed that a bar could be strained

from o up to a stress near its elastic limit an enormous number

of times without rupture. From a discussion of these numer-

ous experiments the following laws may be stated.

1. By repeated applications of stress rupture may be caused

by a unit-stress less in value than the ultimate strength
of the material.

2. The greater the range of stress the less is the unit-stress

required to produce rupture after an enormous number

of applications.

3. When the stress ranges from o up to a value about equal
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to the elastic limit the number of applications required
to rupture it is enormous.

4. A range of stress from tension into compression, or vice

versa, produces rupture with a less number
t
of applica-

tions than the same range in stress of one kind only.

5. When the range of stress in tension is equal to that in

compression the stress which will produce rupture after

an enormous number of applications is a little greater

than one-half the elastic limit.

The term ' enormous number '

used in stating these laws

means about 40 millions, that being roughly the number used

by WOHLER to cause rupture under the conditions stated.

For all practical cases of repeated stress, except in fast moving

machinery, this great number would seldom be exceeded during

the natural life of the piece.

In Art. 8 it was recognized that the working strength should

be less for pieces subject to varying stresses than for those car-

rying steady loads only. For many years indeed it has been

the practice of designers to grade the working strength accord-

ing to the range of stresses to which it might be liable to be

subjected. WOHLER'S laws and experiments afford however a

means of grading these values in a more satisfactory manner

than mere judgment can do, and formulas for that purpose will

be deduced in the next Article. After the working strength

Sv is determined the cross-section of the piece is found in the

usual way, if in tension by formula (i), and if in compression

by formula (i) or (10) as the case may require.

Prob. 136. How many years will probably be required for a

tie bar in a bridge truss to receive 40 million repetitions of

stress ?

ART. 83. WORKING STRENGTHS FOR REPEATED STRESSES

Consider a bar in which the unit-stress varies from S' to S,

the latter being the greater numerically. Both S' and S may
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be tension or both may be compression, or one may be tension

and the other compression. In the last case the sign of Sf

is

to be taken as minus. Consider the stress to be repeated an

enormous number of times and rupture to then occur. By the

second law above stated 5 is some function of the range of

stres,s or,

This may be expressed in another way, thus,

or, in words, the rupturing stress 5 after an enormous number

of repetitions is a function of the ratio of the limiting stresses.

Let u be the utimate strength of the material, tensile if 5 is

tension and compressive if .S is compression. Let e be the

unit-stress at the elastic limit, and f the unit-stress which pro-

duces rupture after an enormous number of repetitions when

the range of stress in tension is equal to that in compression.

It is required to find the value of 5 in terms of u, e, /, and the

ratio
^r.

For this purpose let the values of the ratio be re-

garded as abscissas and those of *S as ordinates, the former

ranging from -j- i to I as

seen in the figure. Now if

this ratio is -}- I there is no

range of stress and S = u

as in cases of steady load.

Again when the ratio is o

the third law gives S = e

ancl last l when the ratio
o

- SB. is i the fifth law gives

S =f. The most rational assumption as to the law of variation

of S is that it represented by some curve passing through the
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three points determined by the ordinates u, e, and f. The

simplest curve is a parabola, whose equation is,

in which m, n, and/ are quantities to be determined from the

conditions just stated, and doing this there results

This formula is not to be regarded as the true law of rupturing

strength under repeated stresses, but merely as an empirical

statement which agrees with the limiting values determined by

experiment, and which will give approximately intermediate

values.

The formulas most frequently used for determining the unit-

stress which will cause rupture under repeated loads are those

of LAUNHARDT and WEYRAUCH, that of the former being ap-

plicable when the limiting stresses S' and .S are both tension or

both compression, and that of the latter when one limiting

stress is tension and the other compression. LAUNHARDT sup-

poses that S varies uniformly between the ordinates u and e so

that its equation is that of a straight line, or

and the graphical representation is that of the straight line in

the right hand part of Fig. 56. It is seen that formula (17)

gives values of S slightly less than those from LAUNHARDT'S,

except for the ratios o and I when they agree.

The formula of WEYRAUCH applies to the case where the

range of stress is from tension into compression or vice versa,

and it also supposes the law of variation to be that of a straight

line between the limiting ordinates given by experiment, or
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in which the numerical value of the ratio S' : S is to be taken

as positive. This equation is represented by the straight line

in the left hand part of Fig. 56. Here also formula (17)

gives less values for 5 than those obtained by WEYRAUCH'S
formula.

In designing a bar which is to be 'subject to an enormous

number of repetitions of stress, ranging from P' to P, the ratio

P' S'- is the same as
,
and formula (17) gives the unit-stress 5

which will cause rupture after an enormous number of repeti-

tions. To be sure of safety a factor of security must be applied ;

then the working unit-stress is found by dividing 5 by this fac-

tor, which is here usually taken the same as the factor of safety

for a steady load where there is no range of stress. For ex-

ample, consider a kind of wrought iron for which w = 52 ooo,

e = 26000, and/"= 13 ooo pounds per square inch, and let the

factor of security be 4. Then formula (17) becomes,

from which the allowable value cf the working unit-stress can

be computed for assigned values v_/f the ratio S' : S.

For example, let it be required to find the proper cross-sec-

tion of a wrought iron bar which is to be subjected to a repeated

tension ranging from 30 ooo pounds under dead load to 90 ooo

pounds under full live load. Here

S^_P' _ 30000 _ i_

S
~
P
~

90 ooo
~~

3
'

and from the formula just deduced,

Sw = 6$oo(i -[-. _[-.) = 8300.

Then the cross-section of the bar is,

A = = 10.9 square inches.
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S' _ 30000 _ _i_
S +QOOOO~ *'

But if the bar is to be subjected to repeated stress varying from

30 ooo pounds compression to 90 ooo pounds tension, then

5' =
+ 90000

and from the special formula,

S, = 6 500(1
-

|-i+ i-i) = 5 050,

so that the cross-section of the bar should be,

A = = 17.8 square inches,
5050

which is 63 per cent larger than required for the smaller range.

The quantity/which is the unit-stress required to produce

rupture after an enormous number of repetitions in alternating

stress of equal amplitudes, is called the '
vibration strength

'

by
some writers. Its value for wrought iron is about one-half and

for steel a little greater than one-half the elastic limit. For

other materials there is as yet no experimental knowledge

regarding its value.

Prob. 137. A steel bar one inch in diameter is subject to re-

peated stress ranging between 1 5 ooo pounds tension and 40 ooo

pounds tension. Will it break after an enormous number of

repetitions ?

Prob. 138. Show that, according to the above investigation,

the working unit-stress for wrought iron bars subject to re-

peated applications of equal tension and compression should

be about one-fourth of that for a steady stress.

ART. 84. THE INTERNAL WORK IN BEAMS.

When a beam deflects under the action of a load, the hori-

zontal fibers upon one side of the neutral surface are elongated

and upon the other are compressed. The internal work done

will be found by taking the sum of the products formed by
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multiplying the stress upon any elementary area by its elonga-

tion or compression.

Using the same notation as in Chapter III., the horizontal

unit-stress at any distance z from the neutral axis is represented

by . In the distance dx the elongation or compression due

to this unit-stress, is by (2) found to be . The elementary

work of a fiber-of the area a under this gradually applied unit-

stress hence is,

i Saz Szdx

The work done in the distance dx by all the fibers in the cross-

section now is,

S M*
Here 2asf = /and from formula (4), the value of -7- is -

~, , .,.
"''''

Therefore dK .

This is the formula for the work done in the distance dx. By
expressing M as a function of x, and integrating, the total in-

ternal work K between assigned limits can be found.

For example, consider a cantilever beam loaded at the end

with a weight P. Here M= Px. Inserting this and in-

tegrating between the limits o and /, gives,

for the total int rnal work in the beam due to a load which is

gradually applied.
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The preceding furnishes a new method of deducing the de-

flection of a beam loaded with a single weight P. Let A be

the deflection under the weight. Then \PA is the external

work done by the load P upon the beam, and this must equal

the internal work K. Hence the formula,

(18) PA =
El '

i/

from which A may be found for particular cases.

For example, consider a cantilever beam loaded at the end

with P. Then the internal work is, as shown above, .

6EI
Hence the deflection A is,

which is the same as otherwise found in Art. 34.

For a simple be

and (18) becomes,
ri

from which the deflection is,

For a simple beam loaded at the middle the value of Mis

which is the same as found in Art. 35 by the use of the elastic

curve.

Prob. 139. Prove that the internal work caused by a uni-

formly distributed load on a cantilever beam is ^-tns of that

caused by the same load applied at the end.

Prob. 140. Deduce by the method of Art. 35, and also by
the use of the principle of internal work, the deflection under
a load P which is placed upon a simple beam at a distance \l
from one end.



174 APPENDIX AND TABLES. CH. VIII.

ART. 85. ANSWERS TO PROBLEMS.

Below will be found the answers to about nine-tenths of the

problems stated in the preceding pages, the number of the

problem being in parenthesis and the answer immediately fol-

lowing. It has been thought well that some answers should

be omitted in order that the student may struggle with them

to ascertain the truth, according to his best knowledge of the

subject, rather than to make his numerical results agree with

given figures. However satisfactory it may be to the student

to know the result of an exercise he is to solve, let him remem-

ber that after commencement day the answers to problems will

never be given.

The unit-stresses to be employed in solutions will be, unless

otherwise stated in the problem, uniformly taken from the

tables given in the text and in Art. 86. Considering the great

variation in these data it has not been thought best to carry

the numerical answers to more than three significant figures,

but in making the solution four significant figures should be

retained through the work in order that the third may be correct

in the final result.

Chapter I. (i) 7.2, 7.06, and 86.4 square inches. (2) 173,

34.7, and 4320 pounds. (3) 55000 pounds per square inch.

(4) 70000 pounds. (5) 165000 pounds. (6) 0.15 inches.

(7) 25 ooo ooo pounds per square inch. (8) 0.004 inches.

(9) About 3^ inches in diameter, (u) 2880 and 5400 feet.

(12) 0.00153 inches. (13) 52900 pounds per square inch,

(14) 849 pounds per square inch. (15) About if inches in di-

ameter. (16) 9 for AB and 23 for BC.

Chapter II. (17) O.88 inches if/= 15. (18) I 170 pounds

per square inch. (19) 2 500 pounds per square inch. (20) i 620

pounds per square inch. (22) 2^ inches. (23) 57 per cent ;

/= 7.7. (24) 3.28 inches; about 0.73. (25) 0.0032 inches.
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Chapter III. (27) z\ inches. (29) 998 and 742 pounds.

(30) + 800,+ i6o,and 180 at i, 3, and 5 feet from left end.

(31) 10, 40, 90, 40, 10 pound-feet. (33) Y= 140 and

X=2& pounds. (34) 2700 pounds. (35) X - Z= 375

pounds. (36) About 27. (37) 4.20 inches. (38) c = 1.714

inches, /= 7.39 inches
4
. (39) \bd* and -fabd*. (41) At 5.37

feet from left end
;
M 689 pound-feet. (42) No. (43) The

bar will break. (44) 294 pounds per linear foot. (45) About

6000 pounds. (47) 8.87 inches. (48) 0.0178 inches. (49) About

615 pounds. (51) Ultimate strengths about as 4 to I, while

working strengths for a steady load are about. as 1.8 to i.

(52) 3.7 and 1.8. (53) 7 feet, 8 inches. (54) The beam will

break. (56) J> = 5560 and S' = 3 410 pounds per square

inch. (57) 209 inches, 418 inches, and oo. (58) 0.622 inches.

(59) 14 500 ooo pounds per square inch. (62) As 8 to 3 ;
as 64

to 9. (63) 7^ inches. (64) 0.243 inches. (65) x = 6 ooo
-p

for the first case
;
the shear at supports is independent of x.

(68) 0.72 inches.

Chapter IV. (69) The diagrams should always be drawn on

cross-section paper. (70) 4 and 3^. (72) k = 0.366, and

k 0.577. (73) / = 2.828 m. (74) 5 = 829 pounds per square

inch. (76) A heavy 1 5-inch beam; a light 1 5-inch beam.

(78) 0.0269 inches. (80) R, = R
4
= T\w/; X,=R9

= \\wL

(81) o 25' 47". (83)
- = 7.2 which requires the light 6-inch

beam. (84) -fowl. (86) n 0.6095.

Chapter V. (88) 9.15 inches. (89) 2 inches. (90) 205000

pounds. (92) 69.7 tons. (93) 5.05 inches. (94) ^ = 40900,

=irsW (96) r = 0.84 inches. (97) if. (98) 2.35 and 24.

(99) 250000 pounds. (101) 13^ and i6 inches square.

(104) Draw Fig. 48 so as to make bq = o ; then state equation

of moments and reduce it by the relation between the similar

triangles.
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Chapter VI. (106) 30 pounds. (107) 105 degrees. (108)

720, 270, and 290 pound-inches. (109) I 876 pounds per square

inch, (i 10) 7 = 0.0361^* and = 0.577^. (111)7=26.5
and = 3.41. (112) i 680 pounds. (113) 9 380000 pounds per

square inch. (114) 64 horse-power. (115)9.7. (116)2.65 and

3.58 inches. (117) 32 and 8. (119) As v^ to 3. (120) 5 140

and 8 560 pounds per square inch.

Chapter VII. (122) 3 720 pounds per square inch. (123)4690

pounds per square inch. (124) The light 9-inch beam.

(125) Nearly 8 inches. (126) 9 inches. (127)
= 9420,

0=54 20'; 5=7160, = 9 20'. (129) 5.4. (130) 2$

inches. (131) S= 5 660 and Ss 202 pounds per square inch.

(132) At 3 inches from neutral surface 5 = 2000, Sh = 250, and

/ = 2 030 pounds per square inch.

ART. 86. TABLES OF CONSTANTS.

The following tables recapitulate the mean values of the con-

stants of the strength of materials which have been given in

the preceding pages. It is here again repeated that these

values are subject to wide variations dependent on the kind

and quality of the material, and for many other reasons. Tim-

ber, for instance, varies in strength according to the climate

where grown, the soil, the age of the tree, the season of the

year when cut, the method and duration of the process of

seasoning, the part of the tree used, the knots and wind shakes,

the form and size of the test specimen, and the direction of its

fibers, so that it is a difficult matter to state definite numerical

values concerning its elasticity and strength. The quality of

the material causes a yet wider variation, so wide in fact that

in some cases testing machines alone could scarcely distinguish

between wrought iron and steel
; for while the higher grades of

steel have much greater strength than the tables give, the mild

structural and merchant steels may have values almost as low
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as the average constants for wrought iron. In general, there-

fore, the following values should not be used m actuaT cases of

investigation and design except for approximate computations.

Detailed tables giving the results of experiments upon
numerous kinds and qualities of materials may be found in the

following books.

WOOD'S Resistance of Materials ; New York, 1880.

THURSTON'S Materials of Engineering; New York, 1884.

TRAUTWINE'S Engineers' Pocket Book; New York, 1885.

LANZA'S Applied Mechanics; New York, 1885.

UNWIN'S Testing of Materials; London, 1888.

BURR'S Elasticity and Strength of Materials ; New York, 1888.

TABLE I.
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TABLE III.

CH. VIII.

Material.
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